Читаем Жизнь на скорости света. От двойной спирали к рождению цифровой биологии полностью

Гриффит задумался, не превращаются ли друг в друга летальная и безобидная формы бактерии. Чтобы ответить на этот вопрос, он придумал хитрый эксперимент, в котором колол мышам безвредные R-клетки вместе с S-клетками, предварительно убитыми нагревом. Можно было ожидать, что мыши выживут, поскольку когда им кололи только убитую вирулентную форму S, то грызуны выживали. Однако неожиданно, когда живая невирулентная форма R поступила вместе с мертвыми клетками формы S, мыши стали умирать. Из умерших мышей Гриффит получил живые клетки как R-, так и S-типа. Он рассудил, что некая субстанция из убитых нагревом S-клеток перешла в R-клетки и превратила их в S-форму. Поскольку это изменение наследовалось в поколениях бактерий, было сочтено, что этот фактор – генетический материал. Гриффит назвал этот процесс «трансформацией», хотя не имел представления об истинной природе «трансформирующего фактора».

Ответ появился почти через двадцать лет, когда Эвери с коллегами повторили эксперимент Гриффита и доказали методом исключения, что этот фактор – ДНК. Они поочередно убирали белок, РНК и ДНК, используя ферменты, которые переваривают лишь каждый отдельный компонент клетки: в данном случае это были протеазы, РНКазы и ДНКазы соответственно{46}. Последовавшая статья оказала действие, однако вовсе не сразу, потому что научное сообщество не торопилось расставаться с уверенностью в том, что для объяснения генетики необходима сложность белков. В книге «Нобелевские премии и науки о жизни» (2010) Эрлинг Норрби, бывший генеральный секретарь Шведской королевской академии наук, обсуждает, почему так неохотно принимали открытие Эвери: хотя работа его группы была убедительной, скептики приводили рассуждения, что всё равно была возможность, что трансформацию обеспечивали малые количества какого-то другого вещества, например устойчивого к протеазам белка{47}.

Тем временем большие успехи были достигнуты в изучении белков, в частности в 1949 году, когда британец Фредерик Сэнгер определил последовательность аминокислот в гормоне инсулине – замечательное достижение, за которое он будет награжден Нобелевской премией. Его работа показала, что белки – это не комбинация близкородственных веществ без единой структуры, а на самом деле одно вещество{48}. Сэнгер, которого я глубоко уважаю, без сомнения, один из самых виртуозных научных новаторов всех времен благодаря его особому вниманию к разработке новых методов{49}. («Из трех главных видов деятельности, из которых состоит научная работа – думать, говорить и делать, – я предпочитаю последний и, вероятно, умею это лучше всего. Я вполне справляюсь с думанием, но не очень хорошо говорю»{50}.) Его подход принес отличные дивиденды.

Идея, что нуклеиновые кислоты держат ключ к наследственности, постепенно начала преобладать в конце 1940-х и в начале 1950-х, когда были поставлены другие успешные эксперименты по трансформации – например, было показано, что РНК из вируса табачной мозаики сама по себе заразна. И все же признание, что ДНК – это наследственный материал, приходило медленно. Истинное значение экспериментов Эвери, Маклеода и Маккарти стало ясно только в следующем десятилетии, когда накопилось достаточно данных. Один из ключевых для данной гипотезы фактов был получен в 1952 году, когда Альфред Херши и Марта Коулз Чейз продемонстрировали, что ДНК – это генетический материал вируса, известного как бактериофаг Т2, способный заражать бактерии{51}. Значительно лучше стали понимать, что ДНК – это генетический материал, в 1953 году, когда ее структура была выявлена Уотсоном и Криком во время работы в Кембридже (Англия). Предыдущие исследования установили, что ДНК состоит из кирпичиков, называемых нуклеотидами. Каждый нуклеотид состоит из сахара-дезоксирибозы, фосфатной группы и одного из четырех азотистых оснований – аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц). Фосфаты и сахара соседних нуклеотидов сцепляются и образуют длинный полимер. Уотсон и Крик установили, как эти детали соединяются вместе в элегантную трехмерную структуру.

Чтобы достичь этого, они использовали критически важные данные, полученные другими учеными. От Эрвина Чаргаффа они узнали, что четыре разных химических основания в ДНК обнаруживаются парами, что чрезвычайно важно, когда дело доходит до понимания «ступенек», из которых состоит лестница жизни. (В мою коллекцию по истории науки в моем бесприбыльном Институте Крейга Вентера входит лабораторный блокнот Крика того времени, где записаны неудачные попытки повторить эксперимент Чаргаффа.) Они получили ключ к решению от Мориса Уилкинса, который первым поразил Уотсона своими новаторскими рентгеновскими исследованиями ДНК, и Розалинд Франклин. На фото № 51 (также экспонат коллекции в Институте Вентера), сделанном Рэймондом Гослингом в мае 1952 года, видны черные перекрещенные отражения, которые оказались ключом к молекулярной структуре ДНК, выявляющие, что это двойная спираль, в которой буквы текста ДНК соответствуют перекладинам{52}.

Перейти на страницу:

Похожие книги

Основы психофизиологии
Основы психофизиологии

В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.Настоящий учебник, который отражает современное состояние психофизиологии во всей её полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.

Игорь Сергеевич Дикий , Людмила Александровна Дикая , Юрий Александров , Юрий Иосифович Александров

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука
Семь экспериментов, которые изменят мир
Семь экспериментов, которые изменят мир

В середине 80-х годов XX века английский биолог Руперт Шелдрейк выдвинул революционную теорию морфогенетических полей. Согласно его гипотезе, все природные системы — от кристаллов до растений и животных, включая человека и весь человеческий социум, — обладают коллективной памятью, определяющей их поведение, строение и внешние формы. В своем новом бестселлере Шелдрейк продолжает развивать свои идеи, но в еще более доступной и увлекательной форме. Общность сознания, лежащая в основе его теории морфогенетических полей, помогает ему не только объяснять различные паранормальные явления, такие, как телепатия или телекинез, но и вовлекать читателя в увлекательные эксперименты, связывающие воедино теорию с практикой.

Руперт Шелдрейк

Научная литература / Биология / Прочая научная литература / Образование и наука