В выборе вопросов, которые нужно было рассмотреть в труде о звуке, я следовал по большей части примеру своих предшественников. В своей значительной части теория звука, в обычном ее понимании, охватывает ту же область, что и теория колебаний вообще; однако если не ввести некоторых ограничений, то в рассмотрение пришлось бы включить такие вопросы, как морские приливы, не говоря уже об оптике. Мы, как правило, будем ограничиваться теми классами колебаний, для которых наши уши оказываются готовым и удивительно чувствительным инструментом исследования. Не обладая слухом, мы едва ли много больше интересовались бы колебаниями, чем глав — светом.
Настоящий том заключает в себе главы о колебаниях систем в общем случае, в которых, я надеюсь, читатель встретит некоторую новизну трактовки предмета, и затем некоторые результаты, вытекающие из более подробного рассмотрения специальных систем, таких, как натянутые струны, стержни, мембраны и пластинки. Второй том, значительная часть которого уже написана, будет начинаться воздушными колебаниями...
Тэрлинг Плэйс, Уитхэм Апрель 1877 г.
...В математических исследованиях я обычно пользовался методами, которые представляются наиболее естественными для физика. Чистый математик будет недоволен, и иногда (нужно сознаться) справедливо, недостаточной строгостью изложения. Однако в этом вопросе имеются две стороны. Действительно, как ни важно в чистой математике постоянно придерживаться высокого уровня строгости изложения, для физика иногда предпочтительнее удовлетвориться аргументами, вполне достаточными и убедительными с его точки зрения. Его уму, воспитанному на идеях иного порядка, более строгие приемы чистого математика могут показаться не более, а менее доказательными. Далее, настаивать на самой высокой строгости во многих более трудных случаях означало бы вовсе исключить их из рассмотрения ввиду чрезмерности требующегося для этого объема.
В первом издании много труда было положено на установление методом Лагранжа общих теорем, и теперь я более чем когда-либо убежден в преимуществах этого приема. Нечасто случается, чтобы теорему можно было доказать во всей ее общности с математическим аппаратом, меньшим, чем тот, который требуется для рассмотрения частных случаев специальными методами.
При просмотре корректур я вновь воспользовался любезным сотрудничеством г-на Г. М. Тэйлора, который впоследствии был, к сожалению, вынужден оставить эту работу. Ему и некоторым другим друзьям я благодарен также за ценные указания.
Июль 1894 г.
КИРХГОФ
Густав Роберт Кирхгоф родился в Кенигсберге. Там же он учился в университете и после недолгой доцентуры в Берлине в 1850 г. стад профессором физики в Брес-лавле, где началось его многолетнее сотрудничество с Бунзеном. Вскоре Кирхгоф и Бунзен, который был замечательным экспериментатором, переехали в Гейдельберг, где в 1854 г. Кирхгоф получил кафедру физики в университете. Через 5 лет появилась серия работ Кирхгофа и Бунзена, приведших к созданию спектрального анализа. Вскоре ими были открыты цезий и рубидий и отождествлен ряд элементов в спектре Солнца. В 1875 г. Кирхгофа убедили принять кафедру математической физики в Берлине, где он затем и работал до конца своей жизни.
Кирхгофу принадлежит ряд результатов в области теоретической физики — правила Кирхгофа для цепей электрического тока, установление равенства иллучатель-ной и поглощательной способностей тела, решение волнового уравнения в форме запаздывающих потенциалов, которое сыграло важную роль в развитии электродинамики. Кирхгофом был написан 4-томный курс математической физики. Подход, развитый им в механике, был началом глубокой критики представлений классической физики, которую дальше можно проследить в работах Маха и Герца.
Мы приводим краткое предисловие к первому тому «Механики» из «Лекций по математической физике», опубликованных Кирхгофом в 1876 г.
Настоящие лекции посвящены главным образом изложению всей области