В том же реалистическом духе мы рассматриваем здесь вопрос о непротиворечивости — один из вопросов, наиболее занимающих современных логиков и в той или иной мере встающих уже с самого начала*, при создании формализованных языков (см. «Исторический очерк»). Та или иная математическая теория называется противоречивой, если какая—либо теорема доказывается в пей вместе со своим отрицанием. Тогда из обычных правил умозаключения, лежащих в основе правил синтаксиса формализованных языков, можно вывести следствие, что любая теорема одновременно и истинна, и ложна в этой теории, теряющей тем самым всякий интерес. Если, таким образом, мы нечаянно придем к противоречию, то мы не можем оставить его существовать далее, не обесценивая теории, в которой оно возникло.
Можно ли приобрести уверенность, что этого никогда не случится? Не пускаясь по этому поводу в выходящие за пределы нашей компетенции споры о самом понятии уверенности, заметим, что математика может попытаться рассмотреть проблемы непротиворечивости своими собственными методами. В самом деле, сказать, что некоторая теория противоречива, сводится к тому, чтобы сказать, что она содержит правильное формализованное доказательство, оканчивающееся заключением 0=7^0. Но метаматематика может пытаться с помощью способов рассуждения, заимствованных у математики, изучить строение этого формализованного текста, предполагаемого записанным, и в итоге ухитриться «доказать» невозможность такого текста. В самом деле, такие «доказательства» были даны для некоторых частных формализованных языков, менее богатых, чем тот, который мы хотим ввести, но достаточно богатых для того, чтобы на них можно было записать значительную часть классической математики. Можно спросить, правда, что именно «доказывается» таким путем; ведь если бы математика была противоречива, то некоторые ее применения к материальным объектам, и в частности к формализованным текстам, рисковали бы стать иллюзорными. Чтобы избежать этой дилеммы, было бы необходимо, чтобы непротиворечивость формализованного языка можно было «доказать» посредством рассужде-ппй, формализуемых в языке, менее богатом и тем самым более достойном доверия. Но знаменитая теорема математики, принадлежащая Гёделю, говорит, что это невозможно для языка того типа, который мы хотим описать, т.е. для языка, достаточно богатого аксиомами, чтобы допускать формулировку результатов классической арифметики.
С другой стороны, при доказательствах «относительной» непротиворечивости (т.е. при доказательствах, устанавливающих непротиворечивость данной теории в предположении непротиворечивости другой теории, например Теории множеств) метаматематическая часть рассуждения (ср. гл. 1, § 2, п° 4) настолько проста, что даже не представляется возможным подвергнуть ее сомнению, не отказываясь при этом от всякого рационального употребления наших умственных способностей. Так как ныне различные математические теории привязываются в отношении логики к Теории множеств, то отсюда следует, что всякое противоречие, встреченное в одной из этих теорий, дало бы повод противоречию в самой Теории множеств. Это, конечно, не есть аргумент, позволяющий заключить о непротиворечивости Теории множеств. Однако за 40 лет с тех пор, как сформулировали с достаточной точностью аксиомы Теории множеств и стали извлекать из них следствия в самых разнообразных областях математики, еще ни разу не встретилось противоречие, и можно с основанием надеяться, что оно и не появится никогда.
Если бы дело и сложилось иначе, то, конечно, замеченное противоречие было бы внутренне присуще самим принципам, положенным в основание Теории множеств, а потому нужно было бы видоизменить эти принципы, стараясь по возможности не ставить под угрозу те части математики, которыми мы наиболее дорожим. И ясно, достичь этого тем болео легко, что применение аксиоматического метода и формализованного языка позволит формулировать эти принципы более четко и отделять от них следствия более определенно. Впрочем, приблизительно это д произошло недавно, когда устранили «парадоксы» Теории: множеств принятием формализованного языка, по существу эквивалентного с описываемым здесь нами. Подобную ревизию следует предпринять и в случае, когда этот язык окажется в свою очередь противоречивым.
Итак, мы верим, что математике суждено выжить
НЕЙМАН