там нужно заменить ф на ф, в результате чего вычисления несущественно изменяются, точнее упрощаются). Если длина волны электромагнитных
волн, соответствующая разностной частоте, велика по сравнению с размерами объема, в котором сосредоточено все распределение заряда, то по законам обычной электродинамики амплитуда парциального момента (или, точнее говоря, квадрат амплитуды, умноженной на четвертую степень частоты) есть мера интенсивности света, излученного с данной частотой и данной поляризацией. Электродинамическая гипотеза о я)) и последующее чисто классическое вычисление излучения базируются на опыте, поскольку они дают обычные правила отбора и поляризации для осцилля тора, ротатора и атома водорода; кроме того, они дают для тонкого расщепления линий серии Бальмера в электрическом поле удовлетворительные отношения интенсивностей.Если возбуждено только одно
собственное колебание или собственные колебания с одной собственной частотой, то распределение заряда будет статическим; однако при этом могут образоваться стационарные токи (магнитные атомы). Таким образом выясняется устойчивость основного состояния и отсутствие излучения в этом состоянии.Амплитуды парциальных моментов тесно связаны с теми величинами («матричными элементами»), которые, согласно формальной теории Гейзенберга, Борна и Иордана, определяют излучение. Можно доказать далеко идущую формальную тождественность обеих теорий, согласно которой вычисленные частоты испускания и правила отбора и поляризации всегда совпадают, причем отмеченный выше успех при вычислении интенсивностей можно в равной степени отнести в актив как матричной теории, так и теории, излагаемой здесь.
Все предыдущее относится к консервативным системам; окончательная формулировка теории неконсервативных систем может быть дана только в последней работе. Для неконсервативных систем попользованное ранее колебательное уравнение должно быть обобщено и превращено в настоящее волновое уравнение, содержащее в явном виде время
и пригодное не только для чисто синусоидальных колебаний (с частотой, входящей в уравнение как параметр), но и для произвольной зависимости от времени. С помощью обобщенного волнового уравнения можно рассмотреть ззаимодействие системы с падающей световой волной и вывести разумную формулу дисперсии, опираясь на ту же электродинамическую гипотезу о функции г|). Указано обобщение на случаи произвольного возмущения. Затем из обобщенного волнового уравнения удается вывести интересный закон сохранения для «весовой» функцпи который только и дает полное оправдание пресловутой электродинамической гипотезе и позволяет вывести выражения для составляющих плотности электрического тока через распределение.Системы, рассмотренные в первых пяти работах, не могут быть в полном смысле консервативными, поскольку они излучают энергию, что должно сопровождаться изменением этих систем. Таким образом, в волновом законе для функции г|>, по-видимому, отсутствует нечто, соответствующее «радиационной силе» классической электродинамики и вызывающее, например, затухание высших собственных колебаний по сравнению с низшими. Это необходимое дополнение до сих пор не
получено*