Читаем Жизнь науки полностью

ОБЩИЙ МЕТОД В ДИНАМИКЕ, КОТОРЫМ ДВИЖЕНИЕ ВСЕХ СВОБОДНЫХ СИСТЕМ ПРИТЯГИВАЮЩИХСЯ ИЛИ ОТТАЛКИВАЮЩИХСЯ ТОЧЕК СВОДИТСЯ К ОТЫСКАНИЮ И ДИФФЕРЕНЦИРОВАНИЮ ОДНОГО ГЛАВНОГО СООТНОШЕНИЯ, ИЛИ ХАРАКТЕРИСТИЧЕСКОЙ ФУНКЦИИ

Со времени изобретения Галилеем динамики как математической науки и особенно с тех пор, как эту науку так замечательно продолжил Ньютон, теоретическое развитие законов движения тел составляет задачу такой важности и значения, что оно приковывает внимание всех наиболее известных математиков. Среди последователей этих блестящих ученых наверное никто так много не сделал, по сравнению с другими исследователями, для развития и придания гармонии ее выводам, как Лагранж. Лагранж показал, что всю возможную сложность следствий движения системы тел можно получить из одной главной формулы. Красота этого метода так соответствует значимости результатов, что придает его великому сочинению облик научной поэмы. Но в науке о силах, действующих по известному закону в пространстве и времени, произошла новая революция[19]. Эта революция во взглядах придала еще большее значение динамическим принципам нашего понимания, заставив нас полностью отказаться от понятий сплошности и сцепления и тех других материальных связей или воображаемых геометрических условий, которые так счастливо ввел Лагранж. Новая теория все больше стремится свести все связи и действия тел к взаимному притяжению и отталкиванию частиц. Таким образом, в то время как наука продвигается в одном направлении путем развития наших физических представлений, она может продвигаться также и по пути изобретения новых математических методов. Метод, предложенный в настоящем сочинении для теоретического изучения движений притягивающихся и отталкивающихся систем, будет, быть может, принят с благосклонностью как попытка помочь тому, чтобы продвинуть вперед решение этой основной задачи.

Для определения движения свободной точки в пространстве под действием ускоряющих сил обычно используют методы, связанные с интегрированием трех обыкновенных дифференциальных уравнений второго порядка. Случай системы многих свободных точек, отталкивающихся или притягивающихся друг к другу, связан уже с интегрированием системы таких уравнений, число которых в три раза больше, чем число взаимодействующих точек, если мы не уменьшили на единицу это число, рассматривая только относительное движение. Так, в солнечной системе, когда мы рассматриваем взаимное притяжение Солнца и десяти известных нам планет, то их движение вблизи Солнца сводится обычными методами к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время. Если же мы применим преобразование Лагранжа, то придем к интегрированию шестидесяти обыкновенных дифференциальных уравнений первого порядка для времени и элементов эллиптических орбит. Путем их интегрирования мы найдем тридцать изменяющихся координат или шестьдесят изменяющихся элементов как функций времени.

В методе, который предложен в данном сочинении, эта задача сводится к отысканию и дифференцированию одной функции, удовлетворяющей двум дифференциальным уравнениям в частных производных первого порядка и второй степени. Любую другую задачу динамики, касающуюся движения произвольной системы, какой бы сложной она ни была и из скольких бы притягивающихся или отталкивающихся точек она ни состояла (даже если мы предположим, что эти точки ограничены любыми условиями связи, совместимыми с законом живой силы), мы можем ее свести подобным образом к изучению одной главной функции. Вид этой функции определяется и характеризуется свойствами системы, и ее нахождение связано с парой дифференциальных уравнений в частных производных первого порядка, а также и несколькими простыми соображениями. Таким образом, трудность, по крайней мере, переносится с интегрирования многих уравнений одного вида на интегрирование двух уравнений другого вида. Если при этом даже и не получается какое-либо практическое упрощение, то эта возможность дает некоторое интеллектуальное удовлетворение в сведении наиболее сложных задач и, вероятно, всех задач, касающихся сил и движения тел, путем введения одной характеристической функции[20], раскрытию одного главного соотношения.

Перейти на страницу:

Похожие книги

1С: Предприятие. Торговля и склад
1С: Предприятие. Торговля и склад

Целью написания данной книги является создание руководства по работе с программным продуктом «1С: Предприятие» конфигурация «Торговля+Склад».В книге использован язык, понятный и доступный не только «продвинутым» пользователям системы «1С: Предприятие», но и людям, которые впервые будут с ней знакомиться. Данное руководство окажется полезным как пользователям, которые занимаются настройкой параметров учета, конфигурированием системы (построением структуры номенклатуры, структуры контрагентов и т. п.), проведением анализа введенной информации (формированием и анализом различных отчетов на основе введенных данных), так и пользователям, которые используют в своей работе узкий круг функций и возможностей системы «1С: Предприятие» (операторам, кладовщикам, кассирам, продавцам).Издание подготовлено при содействии Агентства Деловой Литературы «Ай Пи Эр Медиа»

Игорь Сергеевич Суворов

Финансы / Прочая научная литература / Образование и наука