Читаем Жизнь науки полностью

Наряду с новой сквозной нумерацией страниц сохранена также (за исключением краткой заметки в «Naturwissenschaften») нумерация страниц оригинальных статей, облегчающая нахождение ссылок. В предметном указателе страницы указаны по новой, сквозной нумерации. [В данном издании указания на страницы опущены.— Ред.].

Цюрих, ноябрь 1926 г.

Предметный указатель содержания

Гамильтонова оптико-механическая аналогия есть аналогия с геометрической оптикой, поскольку траектория изображающей точки в конфигурационном пространстве соответствует в оптике лучу света, который определен лишь в рамках геометрической оптики. Представления волновой оптики ведут к отказу от понятия траектории, если размеры траектории невелики по сравнению с длиной волны. Только тогда, когда это так, остается приближенно применимым понятие траектории и с ним вся классическая механика. Напротив, для «микромеханических» движений основные уравнения механики неприменимы в той же степени, что и геометрическая оптика для решения дифракционных задач, и вместо основных уравнений механики следует, как и в оптике, пользоваться волновым уравнением в конфигурационном пространстве. Это уравнение сформулировано сначала для чисто периодических, синусоидальных во времени колебаний; его можно вывести также из «вариационного принципа Гамильтона». Оно содержит параметр Е, соответствующий при переходе к макроскопическим задачам механической энергии и для каждого синусоидального во времени колебания равный частоте, умноженной на постоянную Планка А. Решения, которые вместе со своими производными во всем конфигурационном пространстве одпозпачны, непрерывны и ограниченны (конечны), могут быть у волнового, или колебательного, уравнения в общем случае только при некоторых избранных значениях параметра Е — при собственных значениях. Они образуют «спектр собственных значений», который часто наряду с дискретными точками («линейчатый спектр») содержит также непрерывные части («сплошной спектр», в большинстве формул не учитываемый). Собственные значения либо совпадают с энергетическими уровнями (спектроскопическими «термами», умножен-нымп на h) прежней квантовой теории, либо отличаются от них в согласии с опытом (невозмущениое кеплерово движение, гармонический осциллятор, жесткий ротатор, нежесткий ротатор, эффект Штарка). Указанные отличия состоят в появлении нецелых квантовых чисел (а именно, половпн печетных чисел) у осциллятора и ротатора и в отсутствие «избыточных» уровней в задаче Кеплера (а именно, уровней с исчезающим азимутальным, или экваториальным, квантовым числом). В этом пункте имеется согласие с квантовой механикой Гейзенберга, что допускает общее обоснование квантовой и волновой механики.

Для вычисления собственных значений и соответствующих решений волнового уравнения («собственных функций») в более сложных случаях развита теория возмущений, позволяющая более трудную задачу свести с помощью квадратур к «близкой» задаче, являющейся более простой. «Вырождение» соответствует наличию кратных собственных значепий. С физической точки зрения наиболее важен случай, когда, как, например, при эффектах Зеемапа и Штарка, кратное собственное значение под дей-ствпем возмущающих сил расщепляется (общая теория, эффект Штарка).

Чтобы понять, как малая механическая система может испускать электромагнитные волны с частотой, равной разности термов (разность двух собственных значений, деленная на fe), и как получить теоретические результаты об интенсивности и поляризации электромагнитных волн, необходимо приписать функции в конфигурационном пространстве определенный физический, а именно электромагниты#, смысл; до сих пор она имела чисто формальный смысл, удовлетворяя указанному выше волновому уравнению. Физический смысл функции выясняется для общего случая системы с произвольным числом степеней свободы лишь в конце серии работ (предварительная попытка для задачи об одном электроне оказалась несовершенной). Определенное распределение \|) в конфигурационном пространстве толкуется как непрерывное распределение электрического заряда (и плотности электрического тока) в реальном пространстве. Если из этого распределения заряда вычислить обычным путем составляющую электрического момента всей системы в каком-нибудь направлении, то эта последняя оказывается суммой отдельных слагаемых, получающихся как парные комбинации каждых двух собственных колебаний. Каждое такое слагаемое колеблется во времени синусоидально с частотой, равной разности соответствующих собственных частот (однако

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Мозг и его потребности. От питания до признания
Мозг и его потребности. От питания до признания

Написать книгу, посвященную нейробиологии поведения, профессора Дубынина побудил успех его курса лекций «Мозг и потребности».Биологические потребности – основа основ нашей психической деятельности. Постоянно сменяя друг друга, они подталкивают человека совершать те или иные поступки, ставить цели и достигать их. Мотиваторы как сиюминутных, так и долгосрочных планов каждого из нас, биологические потребности движут экономику, науку, искусство и в конечном счете историю.Раскрывая темы книги: голод и любопытство, страх и агрессия, любовь и забота о потомстве, стремление лидировать, свобода, радость движений, – автор ставит своей целью приблизить читателя к пониманию собственного мозга и организма, рассказывает, как стать умелым пользователем заложенных в нас природой механизмов и программ нервной системы, чтобы проявить и реализовать личную одаренность.Вы узнаете:• Про витальные, зоосоциальные и потребности саморазвития человека.• Что новая информация для нашего мозга – это отдельный источник положительных эмоций.• Как маркетологи, политики и религиозные деятели манипулируют нами с помощью страха. Поймете, как расшифровывать такие подсознательные воздействия.

Вячеслав Альбертович Дубынин , Вячеслав Дубынин

Научная литература / Научно-популярная литература / Образование и наука