Поскольку законы физики предполагают временную симметрию, обращенное во времени Большое сжатие – это такое же физически возможное событие, как и Большой взрыв. Симметрия двух событий привела многих космологов к следующему выводу: то, что представляется нам черной дырой, поглощающей звезды в нашей Вселенной, может быть Большим взрывом в другой вселенной, находящейся по ту сторону черной дыры. Однако, как считает Смолин, верно и обратное: Большой взрыв, в результате которого возникла наша Вселенная, мог оказаться Большим сжатием вселенной-прародителя. По мнению Смолина (и многих других космологов), отсчет времени начинается не с момента Большого взрыва, время разворачивается в обратном направлении через события Большого взрыва нашей Вселенной, назад к смерти вселенной-прародителя в момент Большого сжатия и дальше к ее появлению из черной дыры, и так далее до бесконечности. Более того, он считает, что, поскольку в нашей Вселенной насчитывается 100 миллионов черных дыр, каждая из них является прародителем ста миллионов вселенных, которые произошли от нашей.
В модели Смолина заложен процесс самовоспроизведения, в котором роль зародыша вселенных выполняют черные дыры. Следующий компонент его гипотезы «размножения вселенных» – наследственность. Смолин считает, что каждая вселенная следующего поколения наследует от родительской вселенной такие признаки, как параметры, значения фундаментальных постоянных, массы частиц и так далее. Их можно представить как своеобразные космологические гены[474], которые несут информацию о признаках вселенной по аналогии с тем, как биологические гены являются носителями наследственной информации о живых существах.
И наконец, Смолину предстояло решить еще одну проблему теории естественного отбора, которая в свое время озадачила Дарвина и Уоллеса: найти источник изменчивости, на основе которой действует естественный отбор. Обратившись вновь к биологии, Смолин предположил, что в процессе стихийного поглощения вселенной с ее космическими генами черной дырой могут возникнуть изменения значений, то есть начнется нечто наподобие мутаций.
Идея о том, что законы физики подвержены изменениям, не нова. Смолин отмечает, что американский философ XIX века Чарльз Сандерс Пирс (1839–1914), на взгляды которого дарвинизм оказал глубокое влияние, выдвинул гипотезу о том, что законы физики могут эволюционировать подобно живым организмам. Похожее заявление сделал английский математик и философ Уильям Кингдон Клиффорд (1845–1879). Даже средневековые теологи, такие как Уильям Оккам, высказывали предположение о том, что Бог мог создать и другие миры, отличные от нашего. Физики Джон Арчибальд Уилер, Ричард Фейнман и Сет Ллойд предполагали, что законы физики подвержены изменениям во времени и пространстве[475]. Однако гипотеза об эволюции физических законов в пределах нашей Вселенной кажется маловероятной. Насколько мы можем судить, наша Вселенная подчинялась одним и тем же законам с момента ее возникновения до позднейших этапов развития. Тем не менее, считает Смолин, это не означает, что физические законы не претерпевают изменений в других вселенных.
Смолин в своей теории исходит из предположения о том, что у биологического процесса возникновения жизни есть космологический эквивалент, развивавшийся по тому же сценарию: когда-то в отдаленном прошлом существовало абсолютно пустое пространство. Однако квантовая механика вновь и вновь удивляет нас, доказывая, что нельзя быть уверенным ни в чем и никогда. Это еще одно неожиданное следствие принципа неопределенности Гейзенберга, которое заставляет нас усомниться в отсутствии массы и энергии в абсолютном вакууме. Квантовая механика допускает, что виртуальные частицы могут возникать и исчезать даже в вакууме пустого пространства. В 1982 году американский физик русского происхождения Александр Виленкин выступил с еще более неожиданным заявлением о происхождении Вселенной попросту «из ничего» в результате квантовой флуктуации[476].
В настоящее время этот сценарий считается наиболее вероятным. Судя по всему, крошечная вселенная в момент своего появления не представляла интереса, поскольку произвольные значения фундаментальных констант были несовместимы с существованием материи. В момент появления этой нематериальной вселенной ее положительная и отрицательная энергия воссоединялись и исчезали. Однако квантовые флуктуации продолжались, создавая вселенные из космологического вакуума, пока наконец, пройдя через несколько триллионов произвольных значений, не появилась вселенная с такими значениями фундаментальных постоянных, которые создали благоприятные условия для формирования материи, звезд, планет и, как минимум, нескольких черных дыр.