Читаем Жизнь замечательных веществ полностью

Согласно правилам наименования новых элементов, принятым IUPAC в 2002 году, для обеспечения лингвистического однообразия всем новым элементам должны даваться названия, оканчивающиеся на – ий (в английской и латинской версии названия – «-ium»). Однако в английском языке названия элементов 17-й группы Периодической системы (галогенов) традиционно имеют окончание «-ine»: Fluorine – фтор, Chlorine – хлор, Bromine – бром, Iodine – иод, Astatine – астат. Поэтому вскоре после признания открытия 113-го, 115-го, 117-го и 118-го элементов в правила были внесены изменения, согласно которым, по принятой в английской химической номенклатуре традиции, элементам 17-й группы на английском и латинском языках должны даваться названия, заканчивающиеся на «-ine». Не дожидаясь этого решения, уже через неделю после заявления IUPAC о подтверждении синтеза элемента № 117 7 января 2016 года британский химик Кэт Дэй разместила в Интернете петицию, в которой предложила назвать этот элемент «октарином» (octarine, Oc) в честь «восьмого цвета радуги» из романов о Плоском мире британского писателя Терри Пратчетта, скончавшегося в марте 2015 года. По Пратчетту, октарин могут видеть только волшебники (и еще кошки), тем не менее он вполне реален и указывает на присутствие магии. Предложенное имя вполне коррелировало с англоязычными названиями галогенов, но первооткрыватели сто семнадцатого элемента решили по-своему и назвали его название «теннессин» (Ts Tennessine) в знак признания вклада штата Теннесси, в том числе Национальной лаборатории Ок-Ридж, Университета Вандербильта и Университета Теннесси в Ноксвилле, в изучение сверхтяжёлых элементов.



И наконец, открывателями самого тяжелого на настоящий момент элемента, завершающего седьмой ряд Периодической системы, – «эка-радона», элемента с порядковым номером 118, были признаны ученые из ОИЯИ и Ливерморской национальной лаборатории. При получении этого элемента мишенью для луча из ядер кальция-48 стал калифорний-249 («Physical Review C», 2006, 74, 4, 044602; doi: 10.1103/PhysRevC.74.04460).


24998Cf + 4820Ca294118Og + 3 10n


Элемент № 118 находится в группе инертных газов, которые, за исключением гелия, традиционно имеют окончание «-он» (-on): неон, аргон, криптон, ксенон, радон. Поэтому опять в 2016 году в правила IUPAC были внесены изменения, согласно которым по принятой в химической номенклатуре традиции элементам 18-й группы (группы инертных или благородных газов) должны даваться названия, заканчивающиеся на «-on». Элемент № 118 получил название «оганесон» (Oganesson, Og) в честь академика РАН Юрия Цолаковича Оганесяна, научного руководителя Лаборатории ядерных реакций им. Г. Н. Флёрова того самого дубнинского ОИЯИ, за его новаторский вклад в исследование трансактиноидовых элементов. Научные достижения Ю.Ц. Оганесяна включают в себя открытия сверхтяжёлых элементов и значительные достижения в области ядерной физики сверхтяжёлых ядер, включая экспериментальное свидетельство существования острова стабильности. Таким образом, Оганесян оказался вторым ученым после Гленна Сиборга, именем которого химический элемент был назван прижизненно (название «сиборгий» было утверждено в 1997 году, а Сиборг, участвовавший в открытии плутония и девяти других трансурановых элементов, скончался 25 февраля 1999 года).



У оганесона, как и у нихония, тоже непростая история открытия. Впервые о его синтезе сообщили физики из Беркли в 1999 году, однако синтез элемента 118 по заявленной методике не удалось воспроизвести в нескольких центрах ядерных исследований – российском, немецком и американском, из-за чего это первое заявление было признано ошибочным («Physical Review Letters», 2002, 89, 3, 039901, doi: 10.1103/PhysRevLett.83.1104), а его авторов даже обвиняли в фальсификации результатов.

Заполненный седьмой ряд Периодической системы не предел – учёные всегда готовы смело идти за пределы изведенного, туда, где не ступала нога человека. Уже анонсированы планы нескольких ядерных центров синтезировать элементы с номерами 119 и 120. Более того, еще в 2012 году в Институте по изучению тяжелых ионов имени Гельмгольца в течение пяти месяцев предпринимали попытки получить ядра химических элементов со ста девятнадцатью и ста двадцатью протонами, хотя и безрезультатно. Но как оптимистично полагает физик-ядерщик из Университета Ливерпуля Рольф-Дитмар Херцберг, существующие методы синтеза сверхтяжелых элементов позволят справиться и с этой задачей. Однако и Херцберг, и другие его коллеги сходятся во мнении, что шансы на получение элементов с номерами бо́льшими, чем 120, исчезающе малы.

Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука