Читаем Жмурки с электричеством полностью

Некоторую ясность сюда привнёс Дж.Дж.Томсон. Он провёл классические опыты — с воздействием магнитного и электрического полей на катодные частички. И установил, что знак заряда катодных частичек точно отрицательный, а удельный заряд одной такой частички, т.е. отношение заряда к массе, на три порядка больше удельного заряда самого лёгкого иона, водорода — а эта величина была известна из опытов по электролизу. Так, уже теплее. Но! Кабы знать по отдельности заряд и массу катодной частички — сразу стало бы ясно, что это электрон. А если знаешь только отношение заряда к массе у катодной частички — возможны варианты! Толку-то с того, что это отношение на три порядка боьше, чем у иона водорода! Почему оно больше — потому что масса частички меньше? А, может, потому что заряд у частички больше? А, может, и то, и другое?

Короче, вопрос о величине дискрета электрического заряда встал во всей своей красе, и неспроста. Сегодня-то все, кому не лень, знают об элементарном электрическом заряде. А на рубеже XIX-XX веков, представьте себе, были физики, которые полагали, что частицы могут нести произвольные количества электричества, выражаемые даже не натуральными числами, а любыми дробными — и что в экспериментах проявляются лишь статистически средние величины заряда по ансамблю частиц. Сейчас, конечно, подобные воззрения кажутся наивными, особенно если иметь в виду, что «электрический заряд» — это просто метка для управляющей программы. Эта метка у частицы либо есть, либо её нет — третьего не дано. Но кто понимал это на рубеже XIX-XX веков, если это и сегодня мало кто понимает? если нынешние теоретики толкуют о кварках — якобы, имеющих дробные (!) доли элементарного заряда!

Ни стыда у этих теоретиков, ни совести — из «прекрасного далёка» плюют прямо в душу Милликену, который чуть в лепёшку не разбился, а величину «элементарного заряда» выложил на блюдечке. Он, знаете ли, впрыскивал мелкие масляные капельки в пространство между горизонтальными пластинами, на которые подавал электрическое напряжение. Для капелек, имевших некоторый заряд, можно было подобрать напряжение так, чтобы электрическая сила почти уравновешивала силу тяжести — и тогда капелька долго оставалась в поле микроскопа, медленно двигаясь вниз или вверх. Это происходило не в вакууме, а в воздухе, в котором предусмотрительно создавались ионы — с помощью излучения маленького кусочка радия. Если капелька присоединяла к себе ион, то её масса, практически, не изменялась, но изменение заряда вызывало изменение её вертикальной скорости. Так вот: изменения этой скорости всегда происходили скачками. И эти скачки соответствовали изменениям заряда, которые были кратны одной и той же величине. Которую и договорились называть «элементарным зарядом».

Потом ещё было строго научно доказано, что элементарный положительный заряд по величине точно равен элементарному отрицательному. И что в состав атомов входят электроны, имеющие элементарный отрицательный заряд, и протоны, имеющие элементарный положительный заряд. И что по массе электроны и протоны различаются почти в 2000 раз, так что Дж.Дж.Томсон не зря старался. Да, и главное: в нейтральном атоме одинаковы количества протонов и электронов — а если их количества неодинаковы, то это уже не атом, а ион. Столько всего встало на свои места!

Впрочем, оставались ещё кое-какие неясности. Например, электрический заряд — обладает ли он энергией? Вопрос-то — на засыпку. Максвеллу в его «Трактате» было легко рассуждать:

«Электричество… не является, подобно теплоте, формой энергии».

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки