Читаем Журнал «Если», 1999 № 01-02 полностью

Если масса звезды, в недрах которой закончилось ядерное топливо, превышает массу Солнца на 25 %, то она будет сжиматься до тех пор, пока ее плотность не достигнет 10 8— 10 9кг/м 3. Это очень высокая плотность — наперсток с таким веществом весил бы на Земле несколько тонн. Такие звезды имеют небольшой размер и называются белыми карликами. У самой яркой звезды нашего неба Сириуса есть такой спутник. Судьба более массивных звезд, в недрах которых прекратилась термоядерная реакция и обусловленные ею высокие температуры и давление не могут больше противостоять гравитационным силам сжатия, еще более драматична. Сила сжатия достигает такой величины, что протоны сливаются с электронами, превращаясь в нейтроны, лишенные электрического заряда. Возникает нейтронная звезда. Ее средний радиус всего 10 км, а плотность 10 18кг/м 3— наперсток с такой плотностью потянул бы в земных условиях на несколько миллиардов тонн!

Продолжая вращаться вокруг своей оси, такая звезда испускает электромагнитное излучение в радио-, оптическом и рентгеновском диапазонах. А поскольку поверхность ее не вполне однородна, ее излучение пульсирует — в некоторых случаях с периодом порядка сотых долей секунды.

Когда в 1967 г. первая из таких звезд была обнаружена английской обсерваторией Джодрел-бэнк в Кембридже, то наблюдавшие ее Д. Белл и Э. Хьюиш первоначально подумали, что им удалось принять сигналы от внеземной цивилизации. Удостоверившись в естественном происхождении импульсов излучения, они назвали их источник пульсаром. И лишь потом теоретики отождествили пульсар с предсказанным ранее объектом — нейтронной звездой.

ГОРИЗОНТ СОБЫТИЙ

В 1916 г. немецкий физик-теоретик Карл Шварцшильд исследовал решения общей теории относительности, незадолго до этого опубликованной Эйнштейном. Ему удалось показать, что если тело массой М сжать в сферу, радиус которой меньше некоторой критической величины, то пространство-время вблизи этого радиуса искажается настолько сильно, что свет не может покинуть эту сферу. Позднее эту критическую величину назвали радиусом Шварцшильда. Четырехмерное пространство-время, замкнутое в сфере с таким радиусом, удерживает внутри себя материальные объекты и сигналы любой природы, ничего не выпуская наружу. Область пространства, ограниченную радиусом Шварцшильда, вторично открытую на кончике пера, ученые и назвали черной дырой.

Как только степень сжатия угасающей звезды достигает шварцшильдовского радиуса, она должна исчезнуть для внешнего наблюдателя. Эту границу черной дыры назвали горизонтом событий — никакие сведения о том, что происходит за этой чертой, не могут поступить к внешнему наблюдателю.

Любой внешний объект, достигнувший этой границы, никогда уже не сможет вернуться назад. Его ожидает вечное падение к центру черной дыры. Горизонт событий — граница, которая имеет всего одну сторону.

Теоретически в черную дыру может превратиться любой объект. Например, для звезды с массой нашего Солнца радиус Шварцшильда равен 3 км, а для гипотетического астрофизического объекта с массой Земли — всего 1 см. Плотность вещества такого «землеподобного» объекта оказалась бы чудовищно большой — Ю 30кг/м 3! И неудивительно: чтобы уравновесить наперсток с таким веществом, на весы пришлось бы положить саму Землю.

К счастью для нас, нынешнее состояние Вселенной таково, что ни Солнце, ни Земля превратиться в черные дыры не могут. Звезды, масса которых превосходит солнечную вдвое или втрое, в конце жизни становятся белыми карликами или нейтронными звездами.

Но известно достаточно много более массивных звезд. Некоторые из них, завершая свой жизненный цикл, имеют вполне реальный шанс превратиться в черные дыры. Черная дыра с массой, на порядок превосходящей солнечную, будет иметь радиус около 30 км и плотность 10 14кг/м 3.

Однако теория не исключает существования и еще более массивных черных дыр. Если допустить, что центральная часть галактики имеет массу в сто миллионов солнц и сколлапсирована в черную дыру, то ее горизонт событий будет иметь радиус около 300 миллионов километров, т. е. вдвое больше радиуса земной орбиты. А плотность вещества внутри такой дыры будет совсем невелика она равна плотности воды.

На самых ранних стадиях существования нашей Вселенной могли возникнуть еще более удивительные объекты — черные дыры микроскопических размеров. Могли существовать даже мини-дыры размером с атомное ядро, но с массой земной горы приличных размеров. Вполне возможно, что некоторые из подобных удивительных мини черных дыр дожили и до наших дней. Остается только найти способ, чтобы их обнаружить.

ПУТЕШЕСТВИЕ В НЕДРА

Теоретики затрудняются предсказать, что происходит за горизонтом событий, внутри черной дыры. Чтобы хотя бы в некоторой степени разобраться в этом вопросе, поставим смелый мысленный эксперимент — снарядим в окрестность черной дыры пилотируемую экспедицию. Что предстоит испытать отважным астронавтам?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже