Читаем Журнал «Компьютерра» №27-28 от 26 июля 2005 года полностью

По мнению разработчиков, их система имеет ряд преимуществ перед традиционными методами биометрической аутентификации по отпечаткам пальцев или по радужной оболочке глаза. Эти методы позволяют только установить личность путем сравнения считанного с базой данных, где хранится вся остальная необходимая в каждом конкретном случае информация. На ногте же можно записать фамилию, адрес, номер кредитной каты или страхового полиса, группу крови, перенесенные болезни и прочие сведения, которые могут когда-то понадобиться. Единственный недостаток, а быть может, достоинство метода в том, что информация сохраняется только в течение шести месяцев, пока ноготь полностью не отрастет.

Первые успешные эксперименты были проведены на остриженных ногтях, и сейчас ученые работают над компьютерной системой компенсации непроизвольных движений пальца, которая позволит вести запись «вживую». - Г.А.

Сегодня мой пентиум не в духе

К любопытным выводам пришли французские ученые из Национального исследовательского института информации и автоматизации в Орсэе. По их мнению, современные процессоры, содержащие от нескольких десятков до нескольких сотен миллионов транзисторов, которые взаимодействуют друг с другом по весьма запутанным схемам, своим поведением скорее напоминают случайную, плохо предсказуемую погоду, а вовсе не однозначный, строго детерминированный автомат.

Чтобы исключить всякое влияние физических процессов в электронных цепях чипа и собрать побольше статистики, ученые взяли не реальный чип, а процессорный симулятор SimpleScalar, с помощью которого сегодня моделируется и отлаживается архитектура более половины разрабатываемых процессоров. На симуляторе гоняли программы из популярного бенчмарк-пакета Spec 2000 и наблюдали за поведением трех основных параметров производительности выбранной архитектуры: среднего числа выполненных инструкций за такт, а также числа промахов при обращении к кэш-памяти первого и второго уровней.

Собранные данные были проанализированы с помощью статистических методов, применяющихся в нелинейной динамике. Эти методы позволяют обнаружить хаотическое, неустойчивое поведение сложных систем, которое характерно, например, для математических моделей, описывающих процессы в атмосфере. Поведение таких даже строго детерминированных систем в принципе плохо предсказуемо, результаты расчетов очень чувствительны к начальным данным, и поэтому описание и сравнение подобных систем требует специальных методов.

Анализ показал, что поведение процессора сильно зависит от выполняющейся на нем программы. Если, скажем, программа для численного решения уравнений в частных производных демонстрировала регулярную, периодическую динамику, то архиватор и особенно программа компоновки микросхем вели себя шумно и хаотически. Время их выполнения плохо предсказуемо и сильно зависит от начального состояния процессора, то есть от того, что он считал перед этим. Поэтому даже для простого сравнения производительности разных процессоров нужны специальные методы усреднения, развитые в нелинейной динамике. Что уж говорить о субъективных ощущениях людей, которые воспринимают компьютер скорее как норовистое и непредсказуемое живое существо, нежели совокупность бездушных железок. Теперь эти смутные ощущения получили вполне строгое научное обоснование. - Г.А.

Экситон в упряжке

Важного результата, который может привести к появлению принципиально новых экситонных чипов, достигла объединенная команда исследователей из Питсбургского университета и Лаборатории Белла, входящей в состав фирмы Lucent Technologies. Ученым впервые удалось в миллион раз увеличить время жизни экситонов и заставить их перемещаться на сотни микрон, чего уже достаточно для создания фотонных триггеров и ряда других приложений.

Экситонами называют специфические, похожие на атом квазичастицы, которые состоят из отрицательно заряженного электрона и положительно заряженной дырки. В определенных условиях экситон возбуждается в полупроводнике при поглощении фотона и может «аннигилировать», излучая фотон. Мигрируя по полупроводнику, экситоны, как и фотоны, переносят энергию, но не переносят заряд и массу. Однако у них, как и у электронов в полупроводнике, есть так называемая эффективная масса, поэтому экситоны иногда величают «тяжелыми фотонами».

Обычно экситон живет всего-навсего одну триллионную секунды и за это время успевает переместиться лишь на несколько микрон, из-за чего их никто и не пытался использовать. Однако теперь ученым удалось вырастить специальную двухмерную полупроводниковую структуру с квантовыми ямами, в которой экситоны живут до тридцати микросекунд и могут за это время пройти расстояние до миллиметра. Успеха удалось добиться благодаря «растяжению» частиц с помощью электрического поля.

Перейти на страницу:

Все книги серии Компьютерра

Похожие книги