Любой студент, прослушавший курс математического анализа, тут же скажет, что этот ряд сходится для всякого вещественного s > 1. Более того, он сходится и для комплексных чисел, вещественная часть которых больше единицы. Еще более того, функция ς(s) — аналитическая в этой полуплоскости.
Рассматривать формулу для отрицательных s кажется дурной шуткой: ну какой смысл складывать, например, все положительные целые числа или, тем более, их квадраты или кубы? Однако комплексный анализ — упрямая наука, и свойства дзета-функции таковы, что ее можно продолжить на всю плоскость. Это и было одной из идей Римана, изложенных в мемуаре 1859 года. У полученной функции только одна особая точка (полюс): s = 1, а, например, в отрицательных вещественных точках функция вполне определена. Именно значение аналитически продолженной дзета-функции в точке —1 и выражает формула, с которой я начал этот раздел.
(Специально для патриотов и неравнодушных к истории науки людей отмечу в скобках, что, хотя мемуар Бернарда Римана внес в теорию чисел много свежих идей, он не был первым исследованием, в котором распределение простых чисел изучалось аналитическими методами. Впервые это сделал наш соотечественник Пафнутий Львович Чебышёв, 24 мая 1848 года прочитавший в петербургской Академии наук доклад, в котором изложил ставшие классическими асимптотические оценки количества простых чисел.)
Но вернемся к Риману. Ему удалось показать, что распределение простых чисел — а это центральная проблема теории чисел — зависит от того, где дзета-функция обращается в нуль. У нее есть так называемые тривиальные нули — в четных отрицательных числах (—2, —4, —6, …). Задача состоит в том, чтобы описать все остальные нули дзета-функции.
Этот орешек вот уже полторы сотни лет не могут разгрызть самые талантливейшие математики планеты.
Правда, мало кто сомневается в том, что гипотеза Римана верна. Во-первых, численные эксперименты более чем убедительны; о последнем из них рассказывает статья Хавьера Гурдона (Xavier Gourdon), название которой говорит само за себя: «Первые 10 13 (10 в 13-ой) нулей дзета-функции Римана и вычисление нулей на очень большой высоте» (вторая часть названия означает, что предложен метод вычисления не только первых нулей, но и некоторых, пусть и не всех, более далеких, вплоть до нулей с номером около 10 24 (10 в 24-ой)). Эта работа пока венчает более чем столетнюю историю попыток проверки гипотезы Римана для некоторого количества первых нулей. Разумеется, контрпримеров к гипотезе Римана не найдено. Кроме того, строго установлено, что больше 40% нулей дзета-функции гипотезе удовлетворяют.
Второй аргумент напоминает одно из доказательств существования Бога, опровергнутых еще Иммануилом Кантом. Если Риман все же ошибся, то неверной станет очень много красивой и правдоподобной математики, построенной в предположении, что гипотеза Римана правильна. Да, этот аргумент не имеет научного веса, но все же… математика — это наука, где красота играет ключевую роль. Красивое, но неверное доказательство сплошь и рядом оказывается полезнее, чем верное, но некрасивое. Так, например, из неудачных попыток доказать великую теорему Ферма выросло не одно направление современной алгебры. И еще одно эстетическое замечание: теорема, аналогичная гипотезе Римана, была доказана в алгебраической геометрии. Получившаяся теорема Делиня (Deligne) по праву считается одним из самых сложных, красивых и важных результатов математики XX столетия.
Итак, гипотеза Римана, по всей видимости, верна — но не доказана. Кто знает, возможно, сейчас этот журнал читает человек, которому суждено войти в историю математики, доказав гипотезу Римана. В любом случае, как и со всеми остальными великими задачами, сразу предупреждаю: не пытайтесь повторить эти трюки дома. Иными словами, не пытайтесь решать великие проблемы, не поняв теории, которая их окружает. Сэкономите нервы и себе, и окружающим.
На десерт — еще немного интересного о дзета-функции. Оказывается, у нее есть и практические применения, и даже физический смысл. Более того, и гипотеза Римана (точнее говоря, ее обобщение, считающееся столь же сложным, сколь и она сама) имеет прямые практические следствия. Например, одной из важных вычислительных задач является проверка чисел на простоту (дано число, нужно сказать, простое оно или нет). Самый теоретически быстрый на данный момент алгоритм решения этой задачи — тест Миллера-Рабина (Miller-Rabin test) — работает за время O(log n), где n — данное число (соответственно log n — длина входа алгоритма). Однако доказательство того, что он работает так быстро, опирается на гипотезу Римана.