Многие, несомненно, обращали внимание на то, что в последние несколько лет в СМИ все реже встречается термин «микроэлектроника». Гораздо чаще мы слышим и читаем о нанофизике, наноэлектронике, нанотехнологиях. Теперь каждый школьник знает, что приставка «нано» уменьшает обычный метр в миллиард раз. Однако не всем известны принципы функционирования наноустройств, таких как считывающие головки жестких дисков компьютера или сенсоры магнитного поля. Подобные устройства были бы невозможны без развития спинтроники — молодой, но уже весьма авторитетной науки, на плечи которой возложена важная миссия использования квантовых эффектов в сверхэкономичных и сверхбыстрых спиновых устройствах недалекого будущего.
Термин «спинтроника» произошел от англоязычного выражения «spin electronics» («спиновая электроника»; иногда ее называют и «магнитоэлектроникой»). Спинтроника — область науки, изучающая взаимодействие собственных магнитных моментов электронов (спинов) с электромагнитными полями[Здесь и далее авторы дают некоторые физические формулировки в упрощенном виде. — Л.Л.-М.] и разрабатывающая на основе обнаруженных явлений и эффектов спинэлектронные приборы и устройства. Но не будем спешить и последовательно рассмотрим фундаментальные аспекты темы.
Начнем с понятия спина. В теории магнетизма считается, что электрон обладает квантовым свойством — спином, из-за чего он ведет себя подобно стрелке компаса, вращающейся вокруг своей оси и соединяющей его (электрона) южный и северный полюса. Спины электронов могут быть ориентированы в направлениях, которые обычно называют «спин-вверх» (мажорные спины) и «спин-вниз» (минорные спины, см. рис. 1).
Если поместить электроны в магнитное поле, то их спины выстроятся вдоль направления поля. При этом они будут прецессировать (определенным образом вращаться) вокруг силовых линий — это явление можно сравнить с орбитальной прецессией нашей планеты (рис. 2). Если выключить поле, прецессия спина прекращается и его ориентация фиксируется. Другими словами, используя эффект прецессии, можно менять спиновое состояние электрона и тем самым изменять бит информации, переносимый электроном, с логического "0" на "1" и обратно.
Отметим, что впервые в мире спин отдельного электрона «рассмотрели» ученые IBM Research Division (США), и произошло это всего год назад. Для столь прецизионной задачи они использовали так называемую магнитную резонансную силовую микроскопию (magnetic resonance force microscopy, MRFM). Но интерес исследователей к спиновой электронике возник гораздо раньше, в 1988 году, в связи с открытием Бэйбичем (M. N. Baibich ) эффекта гигантского магнитосопротивления в многослойных (количество слоев менялось от 3 до 50) магнитных наноструктурах Fe/Cr, суммарная толщина которых составляла около 100 нм. Было обнаружено, что сопротивление многослойной структуры Fe/Cr, в смежных магнитных слоях которой в отсутствие поля векторы намагниченности выстроены антипараллельно, уменьшается более чем на 50% под воздействием внешнего магнитного поля. Так как уменьшение сопротивления было столь велико, ученые назвали этот эффект гигантским магнитосопротивлением (ГМС) (такое аномальное поведение сопротивления обусловлено различиями в поведении электронов «спин-вверх» и «спин-вниз» в указанных наноструктурах). Открытие ГМС позволило создать высокоточные сенсоры магнитного поля, датчики углового вращения и, самое главное, считывающие головки жестких дисков. Первые считывающие ГМС-головки были выпущены в 1997 году компанией IBM и в настоящее время используются практически во всех жестких дисках.
В чем состоит миссия спинтроники? Дело в том, что кремниевые процессоры в ближайшие десять-пятнадцать лет достигнут предела своих возможностей, поэтому именно сейчас необходимо искать иные физические принципы, на которых будут построены быстродействующие устройства с низкими энергопотреблением и тепловыделением. В спинтронных устройствах переворот спина практически не требует затрат энергии, а в промежутках между операциями устройство отключается от источника питания. Если изменить направление спина, то кинетическая энергия электрона не изменится. Это означает, что тепла почти не выделяется. Скорость изменения положения спина очень высока. Эксперименты показали, что переворот спина осуществляется за несколько пикосекунд (триллионных долей секунды).