В цифровой фотографии сей вопрос, пожалуй, не менее глубок, чем шекспировское "Быть или не быть?". Не стану углубляться в технические дебри и рассказывать о структуре этих типов сенсоров (подробности при желании легко отыскать в Интернете), дам лишь общую информацию. CCD (или ПЗС, если хотите) впервые появился в 1970-м и два последующих десятилетия преобладал во всех массовых разработках. Он традиционно считается менее шумным, очень эффективным (отношение числа зарегистрированных фотонов к общему числу, попавшему на светочувствительную область матрицы, для CCD составляет 95%), проще устроен, но в то же время более дорог в производстве, капризнее в эксплуатации и требует большого количества вспомогательных устройств (то есть нуждается в сложной обвязке, куда входят зарядовые усилители, сигнальные процессоры, различные регистры и дублирующая саму матрицу структура обычной памяти), в силу чего более прожорлив (потребляет на порядок больше CMOS).
Реально работающий твердотельный датчик изображения, построенный на базе CMOS (по-русски - КМОП), появился лишь в 1993-м. Главные достоинства этой технологии - простота и дешевизна производства, высокое быстродействие, возможность снимать сигнал с каждой отдельной ячейки, низкое энергопотребление. Вдобавок на том же кристалле легко реализовать дополнительные схемы: АЦП, процессор, память и т. п. Разумеется, недостатков у CMOS тоже предостаточно: высокий уровень шума, требующий сложных алгоритмов шумоподавления; не завидная чувствительность (так называемый fill factor - коэффициент заполнения, представляющий собой отношение площади фоточувствительного элемента ко всей площади пиксела, - у CMOS не превышает 75%); усилители, занимающие много полезной площади кристалла, и пр.
Противостояние CCD и CMOS до некоторого времени можно было приравнять к знаменитой войне брэндов Nikon и Canon. Известно, что Canon с самого начала (с момента выпуска EOS D30 в октябре 2000-го) сделала ставку на CMOS и по сей день оснащает свои зеркальные камеры сенсорами, изготовленными на основе этой технологии. Nikon же долго оставалась верна CCD, превознося достоинства этого типа сенсора как источника менее шумной и более качественной картинки. До поры до времени CCD действительно пребывал в безусловном фаворе (в том числе и в умах потребителей), но сегодня уже нельзя с уверенностью сказать, какая технология окончательно завоюет рынок, а какая постепенно сойдет со сцены. Если говорить о зеркальных камерах, то здесь, пожалуй, CMOS уже начинает преобладать над CCD, и свою роль в этом процессе сыграла не столько Canon, сколько Sony, как крупнейший производитель сенсоров, к тому же продающий их "на сторону" - в последнее время она, видимо, тоже решила поставить на CMOS. Nikon же "сломался" только в 2004-м, выпустив профессиональную камеру топ-класса D2X на основе сониевского CMOS-датчика; позднее похожей матрицей был оснащен аппарат D2Xs. Вообще интересное явление: почти все производители, крепко сидевшие на CCD, в 2007–08 гг. выпустили хотя бы одну свежую модель на основе CMOS-сенсора: Nikon, Sony, Pentax, Olympus, Panasonic - тенденция, однако…
Один из несокрушимых пока бастионов - компания Fuji, стоящая особняком со своими уникальными сенсорами SuperCCD.
Мнения об этой технологии самые разные, но даже скептики признают, что камера S5 Pro с матрицей SuperCCD четвертого поколения заметно превосходит по динамическому диапазону профессиональные модели N и С. Правда, она столь же заметно проигрывает оным в детализации, но Москва не сразу строилась, и есть надежда, что компания не станет сидеть сложа руки. Тем более что Fuji хоть и использует только собственные матрицы, но "коробки" для них патентует у Nikon: старушка S3 Pro - это фактически "Nikon F80 с цифрозадником", а S5 Pro - почти копия Nikon D200; впрочем, это не секрет. Цимес матриц Fuji в том, что, во-первых, ячейки имеют не прямоугольную, а ромбовидную форму (точнее - шестигранную), что позволяет эффективнее использовать площадь кристалла; во-вторых, массив SuperCCDсенсора состоит из двух типов пикселов: S и R. S-пикселы, предназначенные для проработки деталей в тенях, - большого размера и весьма чувствительны к падающему свету; при увеличении освещенности быстро насыщаются и перестают реагировать на дальнейшее увеличение экспозиции. Напротив, R-пикселы - маленькие и низкочувствительные - отвечают за проработку деталей в светах. Казалось бы, вечная проблема "цифры" решена, но, увы, ничего в этой жизни не дается даром.