Впрочем, трех таких событий слишком мало, чтобы считать эксперименты надежными. Да и гипотеза подобного рода уже не первая. Ранее теоретики объяснили один из необычных пиков на энергетических спектрах, полученных в той же серии экспериментов, с помощью другой суперсимметричной теории с пятью бозонами Хиггса. Так что, пожалуй, стоит подождать вестей из CERN и не суетиться раньше времени. Лучше уж пусть останется Стандартная модель и отыщется один тяжелый бозон Хиггса, чем появится множество легких бозонов и потребуется более сложная модель, их описывающая. ГА
Физикам из Университета Небраски в Линкольне впервые удалось наблюдать квантование электрического сопротивления в зависимости от внешнего магнитного поля у кобальтового контакта атомных размеров. Этот эффект, в принципе, позволяет изготовить считывающую магнитную головку из нескольких атомов и может стать основой магнитных запоминающих устройств будущих поколений.
Магнитные головки современных винчестеров работают на открытом в 1988 году так называемом гигантском магниторезистивном эффекте — сильной зависимости электрического сопротивления специальной тонкопленочной структуры от внешнего магнитного поля. Новый квантовый эффект, предсказанный теоретиками из того же университета в 2005 году, обещает магнитным устройствам хранения информации качественный скачок. Авторы окрестили его «баллистической анизотропной магниторезистивностью». Анизотропной она названа из-за зависимости эффекта от взаимной ориентации направлений магнитного поля и электрического тока в проводнике.
Баллистическим называют движение электронов, которые летят в проводнике по прямой, как пуля в стволе, не рассеиваясь. Поскольку с точки зрения квантовой теории электрон, как и любая частица, одновременно еще и волна, баллистический режим возникает, если размеры проводника уменьшаются до длины волны электронов проводимости. Такой тонкий проводник из ферромагнитного кобальта удалось вырастить на кремниевой подложке между парой заточенных, как стрелы, золотых контактов с зазором 100 нм. Проводимость (или сопротивление) проводника диаметром в несколько атомов становится дискретной — пропорциональной числу баллистических электронов с допустимой энергией. А это число, в свою очередь, зависит от внешнего магнитного поля, которое в ферромагнитных материалах сдвигает энергетические зоны.
В результате электрическое сопротивление кобальтового нановолокна начинает меняться скачками, то есть квантуется, при плавном изменении внешнего магнитного поля или его направления. В экспериментах, в полном соответствии с теорией, наблюдалось изменение числа проводящих электронов, например, с двух до четырех или с шести до семи в зависимости от геометрии конструкции.
Такая квантовая система идеально подходит для считывания информации с магнитных носителей. При этом размеры состоящей из единственного нановолокна «считывающей головки» и соответственно области намагниченности могут, по крайней мере в принципе, составлять лишь несколько атомных диаметров. А поскольку подобная система работает почти так же, как и современные головки — изменяя свое сопротивление, проблем с внедрением тоже вроде бы не предвидится. Разумеется, все это дело отдаленного будущего. Чтобы считать информацию с нескольких атомов, нужно и само устройство изготовить с атомной точностью, что массовому производству пока не под силу. ГА
Двум группам ученых удалось экспериментально подтвердить существование эффекта Ярковского-О’Кифи-Радзиевского-Паддака. Это явление названо так не в честь вычурного аристократа, что, впрочем, ясно любому, кто хоть раз слышал про жену Бойля-Мариотта.
Очень часто, говоря об эффекте, его название сокращают до первой фамилии. Иван Ярковский работал над теорией светового эфира и гравитации в конце позапрошлого века, и хотя его работы известны меньше, чем посвященные той же теме труды Эйнштейна, Ярковскому первому довелось предсказать один из световых эффектов, который теперь и подтвердили сверхточными наблюдениями. Эффект, в двух словах, состоит в следующем. Представим небольшое тело, вращающееся вокруг Солнца и вокруг своей оси. Оно нагревается с той стороны, которая обращена к Солнцу. Из-за осевого вращения нагретая часть со временем оказывается в области терминатора и начинает излучать запасенную энергию в космос. Тепло уходит от тела в виде инфракрасных лучей, а предсказанный Ярковским эффект заключается в том, что это излучение создает микроскопическую тягу, которая, действуя как слабый двигатель, медленно меняет орбиту тела и скорость его осевого вращения.