Читаем Журнал «Компьютерра» № 36 от 3 октября 2006 года полностью

Но давайте рассмотрим, как процесс опознания по лицу проходит в готовой системе A4Vision, испытанной и уже предлагаемой покупателям. Итак, настенный прибор под названием Vision Access 3D Face Reader работает в инфракрасном спектре. Он удобнее видимого, поскольку устойчивее к посторонней засветке, не привлекает внимания и просто не слепит глаза. Главный узел прибора состоит из двух блоков — излучателя и фотоприемника, способного делать качественные снимки со скоростью десятки кадров в секунду. Иногда его называют 3D-камерой, что может ввести в заблуждение. Камера там обычная — 2D, но ее снимки преобразуются в трехмерные поверхности. Естественно, для этого излучатель «структурированной подсветки» должен быть немного в стороне от камеры — ведь если подсвечивать лицо прямо через объектив, то на снимке не будет заметно искажений световой решетки. На некоторых моделях сканера отчетливо видны два «окна», и параллакс между ними составляет около 30 см.

Снимки, сделанные камерой, сначала обрабатываются алгоритмами первичной обработки. Компания рассказывает о них скупо, но известно, что, например, автоматически отбрасываются кадры, на которых нет человеческих лиц, а на тех, что есть, сами лица эффективно выделяются из окружающего их «шума». Слово «эффективно» значит, что эта фильтрация идет почти со скоростью съемки — десятки снимков в секунду. Это впечатляющее и важное достижение — выделение из видеопотока лица, подсвеченного световым шаблоном, прямо влияет на весь процесс опознания. Традиционные системы, работающие с плоскими снимками, проводят такое выделение с большим трудом, поскольку вынуждены работать, по сути, с комбинацией темных и светлых пятен — именно так машина «видит» обычную фотографию.


Новые горизонты

Рынок лицевой идентификации в США (тогда еще 2D) был занят несколькими известными компаниями, которые после терактов провели активную PR-компанию своих продуктов. Их акции пошли вверх, и даже были заключены крупные контракты, но затем Пентагон провел независимые испытания, которые все системы провалили. Например, известная Visionix дала 52,5% ошибок типа «не признал» на базе всего из пятнадцати человек-добровольцев (503 неудачных попытки на 958 распознаваний), а на полевых испытаниях в аэропорту Палм-Бич ошибки типа «обозналась» составили 31,3% от общего числа тревог (1081 ложная тревога из 3455).

В результате, когда A4Vision смогла сделать альфа-версию своего «опознавателя», сама идея face recognition была глубоко дискредитирована, и неизвестному стартапу пришлось доказывать, мол, «ваши старые большие компании ничего не умеют, а наша молодая и маленькая умеет гораздо больше их».

На сегодняшний день главный продукт A4Vision — набор алгоритмов и технических устройств, которые крупные интеграторы систем безопасности могут встраивать в свои приложения. Крупному банку такая система может обойтись даже дешевле стандартных смарт-карт при несравнимо большей надежности.

Меж тем своей главной целью компания видит национальные паспортные системы — самые глобальные и денежные из всех проектов идентификации. Участвовать в них самостоятельно бесполезно (слишком сильны местные лоббисты и соображения национальной безопасности), поэтому основной стратегией является наведение контактов с крупнейшими локальными интеграторами. Дела идут успешно, и вот уже алгоритмами A4Vision американцев будет опознавать Motorola, у нас — НПО «Информация», а кроме них в списке партнеров значатся Unisys, Bell, GE, Oracle, Siemens, Sagem, Samsung и прочая и прочая. А ИФ «Мехатрон» уже установил пробный аппарат на одном из контрольно-пропускных пунктов «Салаватнефтеоргсинтеза», планируя до конца года оснастить ими все проходные предприятия (www.metron.ru/ content/view/39/).


Далее на основе снимков создается предварительная 3D-модель лица, от которой отрезается все постороннее — прическа, усы, борода, шея… В получившейся модели заполняются возможные «дыры» и проводится сглаживание. Кстати, система легко «видит» очки на лице (как выступ перед глазами) и в зависимости от настроек может попросить их снять или, вырезав из модели этот участок, попытаться обработать то, что осталось.

В конечном счете модуль первичной обработки выдает оптимизированную трехмерную поверхность, оптимально подходящую для последующего распознавания.

После первичной обработки наступает черед «извлечения антропометрических особенностей лица». Разумеется, извлекаются не все особенности, а только индивидуальные и не меняющиеся из-за болезней, диет, пластических операций и т. д.

Кстати

Любопытно, что среди законодателей глобальных технологических изменений на Западе немало предпринимателей российского происхождения — Макс Левчин (основатель PayPal) и Сергей Брин (основатель Google), Алек Милославский (основатель Genesys) и Александр Степанов из Adobe…

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже