Читаем Журнал "Млечный Путь" №02 2012 г. полностью

Теперь перейдем к разбору сути эссе Р. И. Пименова. Оно посвящено обсуждению применимости традиционного математического аппарата к физической природе вещей.

Аппарат этот чрезвычайно сложен. Но, вслед за Р. И. Пименовым, нас будет интересовать «дифференциально-топологический этаж» математического здания. О дифференциале было сказано выше. Теперь рассмотрим еще два математических понятия — топология и гладкость.

В «Большом толковом словаре современного русского языка» Д. Н. Ушакова дано такое определение: «ТОПОЛОмГИЯ, топологии, мн. нет, жен. (от греч. topos — место и logos — учение) (мат.). Часть геометрии, исследующая качественные свойства фигур (т. е. независящие от таких понятий, как длина, величина углов, прямолинейность и т. п.)». Более строго можно сказать, что топология — это конкретное средство объединения близких элементов множества в особые непрерывные подмножества.

Важно отметить, что современная топология имеет дело не только с геометрическими множествами (линиями, фигурами, телами), но и с любыми множествами.

Конкретизируя математические абстракции, можно отметить, что очень богато топологиями, например, множество живущих на Земле людей — человечество. Расы, языки, темпераменты, ментальности, профессии и многие другие виды общностей могут являться конкретными топологическими принципами объединения людей в реальные целостные подмножества.

В математике топология занимается изучением в самом общем виде проявлений непрерывности пространства, т. е. его свойств, которые остаются неизменными при непрерывных деформациях — изгибах, растяжениях, сжатиях, скручивании и т. п. без разрывов.


В отличие от метрических геометрий, в топологии не рассматриваются свойства объектов, характеризующиеся расстоянием между парой элементов (точек). И топологически эквивалентными оказываются, например, куб и сфера. Надуйте резиновый куб, и он превратится в сферу!

Теперь о гладкости — «главном герое» эссе Р. И. Пименова. Вот как характеризует он современное понимание гладкости в математике: «…дифференциальная топология установила, что гладкость является совершенно самостоятельным объектом, НЕ ВЫВОДИМЫМ и НЕ СВОДИМЫМ ни из, ни к другим конструкциям».

Дифференциальная топология — это раздел топологии, основанный на аппарате дифференциального исчисления. И именно аксиомы математического анализа (прежде всего, существование бесконечно малых величин и их свойства) и являются основаниями для описания гладкости пространства.

Здесь хотелось бы предупредить читателя от одного распространенного заблуждения. Пространство в математике и физике — это не «бесструктурная и бесформенная пустота». В математике у пространства есть две обязательные характеристики — размерность и метрика. Размерность определяется по числу независимых характеристик (измерений), которые необходимы, чтобы определить точку в этом пространстве. А метрика — это способ задания расстояний между точками пространства. Например, две точки на шаре разделены расстоянием, которое может измеряться «по прямой» (в земных условиях — это прямой туннель из, скажем, Москвы до Иерусалима), а может — по «геодезической», которая равна кратчайшему маршруту самолета на этой трассе.

Чаще всего рассматривают и обсуждают обычное евклидово пространство n измерений. (Напомню, что евклидовыми называют те пространства, расстояния между точками которых измеряются так, как мы определили для «прямого туннеля» — по теореме Пифагора). И, если не оговаривается особо, то по умолчанию принимают n = 3. Чаще просто потому, что мы считаем «наше физическое пространство» трехмерным евклидовым. Но после открытия неевклидовых геометрий и гиперкомплексных чисел в поле зрения математики попали и многие другие пространства, и сегодня их со всеми вариациями и обобщениями существует, вероятно, не меньше, «чем Донов Педров в Бразилии».

Если отвлечься от математического «птичьего языка», то гладкость можно и не определять. Она «дана нам в ощущении» даже в отсутствие зрения, просто «на ощупь». Того же мнения о сущности гладкости придерживается и известный космолог Брайан Грин: «Понятие “гладкости” имеет конкретный математический смысл, но общеупотребительное значение слова “гладкость” хорошо передает суть этого понятия: гладкий — значит без складок, без проколов, без отдельных “нагроможденных” друг на друга кусков, без разрывов. Если бы в структуре пространства существовали такие нерегулярности, уравнения общей теории относительности нарушались бы, оповещая о космической катастрофе того или иного рода: зловещая перспектива, которую наша Вселенная благоразумно обходит».

Обратим внимание — Б. Грин говорит здесь о гладкости трехмерного пространства. Это, как будет видно из дальнейшего, весьма важное обстоятельство!

Итак, существование дифференциала порождает гладкость во всех геометриях. А гладкость порождает причинность.

Все ли в этом мире гладко?

Перейти на страницу:

Похожие книги

Абсолютная власть
Абсолютная власть

Болдаччи движет весь жанр саспенса.PeopleЭтот роман рвет в клочья общепринятые нормы современного триллера.Sunday ExpressИ снова вы можете произнести слова «Болдаччи», «бестселлер» и «киносценарий», не переводя дыхание.Chicago SunРоман «Абсолютная власть» явился дебютом Болдаччи – и его ошеломительным успехом, став безусловным мировым бестселлером. По этой книге снят одноименный киноблокбастер, режиссером и исполнителем главной роли в котором стал Клинт Иствуд.Интересно, насколько богатая у вас фантазия?.. Представьте себе, что вы – высококлассный вор и забрались в роскошный особняк. Обчистив его и не оставив ни единого следа, вы уже собираетесь испариться с награбленным, но внезапно слышите шаги и стремительно прячетесь в укромное место. Неожиданно появляются хозяйка дома и неизвестный мужчина. У них начинается бурный секс. Но мужчина ведет себя как садист, и женщина, защищаясь, хватает со столика нож. Тут в спальню врываются двое вооруженных охранников и расстреливают несчастную в упор. Страсть оказалась смертельной. А незнакомец поворачивается к вам лицом – и вы узнаете в нем… президента США! Что бы вы сделали, а?..

Алекс Дальский , Владимир Александрович Фильчаков , Владимир Фильчаков , Дэвид Балдаччи

Фантастика / Самиздат, сетевая литература / Боевая фантастика / Научная Фантастика / Социально-философская фантастика