Тканевая инженерия — активно развивающаяся отрасль медицины и биологии — буквально воплощает фантастику в жизнь. Специалисты, занятые в этой области, изучая строение живых тканей, пытаются вырастить их в лабораторных условиях, чтобы затем использовать искусственно созданную ткань для трансплантации. Такое «производство» откроет очень серьезные перспективы. Стоит только вдуматься в это: заболевший (раненый, покалеченный) человек сможет быстро восстанавливаться, он получит неисчерпаемый источник для замены поврежденных органов. Ведь современные темпы урбанизации и развитие технических средств, как ни странно, подвергают жителей Земли все большим опасностям и болезням, всевозможным травмам в различных катастрофах, так что задача тканевых инженеров действительно широка — вырастить кости, хрящи и органы для замены поврежденных.
Как и все разделы медицины, тканевая инженерия имеет собственную терминологию и свои методологические подходы. Любая «тканеинженерная» процедура начинается с получения исходного клеточного материала — первого шага. Как правило, для этого проводят биопсию, то есть забирают у пациента, нуждающегося в биоискусственной ткани, клетки нужного типа. Однако не все клетки могут достаточно интенсивно размножаться в искусственной среде. Поэтому другой подход состоит в том, чтобы отобрать недифференцированные клетки-предшественники, так называемые стволовые клетки , которые будут созревать и специализироваться уже в лабораторных условиях. Этим определяется взаимосвязь тканевой инженерии с исследованиями стволовых клеток. Однако не следует отождествлять эти два направления биомедицинских исследований — тканевые инженеры работали над своими проектами еще задолго до того, как термин «стволовые клетки» стал знаком широкой публике.
Второй шаг — культивирование полученных клеток в лабораторных условиях (in vitro) с целью увеличить во много раз их количество. При этом в случае использования недифференцированных (стволовых) клеток они помещаются в специальную среду, которая индуцирует их превращение в клетки строго заданного вида. Чтобы понять, насколько это сложно, достаточно сказать, что в организме насчитывается более 200 разновидностей клеток. Для достижения нужного результата культивирование проводится в специальных биореакторах. В них не только моделируется состав газовой смеси и набор веществ в питательной среде, но и поддерживаются необходимые для развития клеток и тканей физические параметры — освещенность, течение или пульсация жидкости, гравитация и т. п.
Но для выращивания живой ткани мало просто получить достаточное количество нужных клеток, необходимо, чтобы они были надлежащим образом организованы в пространстве. Поэтому следующим шагом становится формирование трехмерного каркаса — носителя для искомой ткани, на котором они бы могли нормально развиваться и выполнять свои функции после пересадки в организм.
Наконец, в итоге всех этих сложных манипуляций появляется готовый биоискусственный эквивалент ткани — графт, и тогда наступает последний этап — его имплантация в тело пациента (графтинг). Использование собственных клеток пациента для изготовления графта — основополагающий принцип тканевой инженерии. Забирая аутоклетки, врачи избегают иммунологических проблем — отторжения пересаженного материала, благодаря чему шансы на удачный исход операции резко возрастают.
Колония эпителиальных клеток, растущая в чашке Петри