Процессор Pentium, появившийся 14 лет назад, имел характерный размер элементов 1 мкм и содержал 3 миллиона транзисторов, работал на частоте 60 МГц и при этом потреблял до 15 Вт электроэнергии. Pentium 4 Dual Core, изготовленный по технологии 65 нм в 2005 году и работающий на тактовой частоте 3,4 ГГц, содержит 1,7 миллиарда транзисторов. И хотя каждый транзистор тратит на одно переключение всего лишь сотые доли фемтоджоуля (то есть порядка 10-15 Дж), с учетом их огромного числа и высокой скорости срабатывания общая потребляемая мощность может достигать 100 Вт. Для нормальной работы процессора нужны не только десятки ампер тока, но и специальная система принудительного охлаждения. Сегодня компания Intel приступила к массовому производству процессоров Penryn, в которых характерный размер структурных элементов составляет всего 45 нм, а слои используемого в качестве изолятора оксида гафния имеют толщину около 1 нм.
Как это ни парадоксально, но основным инструментом современной микроэлектроники является свет, точнее, ультрафиолетовые лучи с длиной волны 151 нм. Сегодня 65-нанометровый «рисунок» внутренней структуры процессора или кристалла флеш-памяти наносится на кремниевую пластину, покрытую тончайшим слоем фоторезистивного материала с помощью фотошаблона и излучения эксимерного лазера, работающего в жестком ультрафиолете. Этот способ отдаленно напоминает фотопечать снимков. Как и в фотопроцессе, за экспозицией следует проявка, а за ней прочие этапы планарной технологии изготовления микросхем (напыление, диффузия, отмывка и т. д.). И в массовом производстве электроники отказываться от электромагнитного излучения и фотошаблонов пока никто не собирается, даже при переходе на технологию с шагом элементов 22 нм. Более того, проводят эксперименты, в том числе и в России, с экстремально жестким ультрафиолетовым излучением, имеющим длину волны всего 13,5 нм. Правда, особо горячие головы склонны считать, что все эти достижения производителей микросхем совсем даже не относятся к области нанотехнологии, полагая, что «нано» начинается только там, где малый размер структуры обеспечивает новому материалу или устройству уникальные физические и потребительские свойства.
У миниатюризации, естественно, имеется предел. Поскольку все сделано из атомов, то и транзистор должен состоять хотя бы из не скольких этих элементарных кирпичиков вещества, чтобы электронам, несущим информацию, было где остановиться в ожидании прихода следующей порции данных. Время межатомного взаимодействия измеряется фемтосекундами (10-15 секунд).
Компьютер, работающий на тактовой частоте в несколько терагерц и состоящий из триллионов сверхминиатюрных логических элементов, легко разместится внутри макового зернышка. Причем он будет потреблять так мало энергии, что это чудо техники можно будет вживить человеку. Так что в не столь отдаленном будущем каждый желающий сможет существенно повысить свои познания, интеллектуальные возможности и объем памяти, просто имплантировав миниатюрный суперкомпьютер себе под кожу.
Старые рецепты