Из более чем сотни обсерваторий, запущенных в космос за полвека, большинство вели наблюдения в рентгеновском диапазоне. Рентгеновское излучение испускается веществом с температурой в миллионы градусов. Такое бывает, например, когда газ падает на сверхплотный объект — нейтронную звезду или черную дыру, закручиваясь в диск и разогреваясь динамическим трением. Другой случай — солнечная корона. Здесь магнитные поля, питаемые энергией из глубин светила, нагревают крайне разреженное вещество до миллиона градусов и выше. А иногда на Солнце появляются активные области, рентгеновское излучение которых намного превосходит обычный фоновый уровень. Наконец, встречается и нетепловое, так называемое синхротронное рентгеновское излучение, возникающее, когда поток быстрых электронов попадает в сильное магнитное поле, например, молодой нейтронной звезды, закручивается под его влиянием и начинает тратить энергию на излучение.
Таким образом, в рентгеновском диапазоне можно наблюдать за веществом в самых экстремальных состояниях. Но и сами рентгеновские кванты — весьма экстремальны. Их энергии достаточно, чтобы оторвать от атома практически любой электрон, разрушить любую молекулу, а жесткий рентген может даже возбуждать атомные ядра. Обычным зеркалом фокусировать рентгеновское излучение можно с тем же успехом, что и поток автоматных пуль. Если мягкое рентгеновское излучение еще может отражаться от полированного металла при скользящем падении под углом менее одного градуса, то жесткий рентген и гамма-кванты регистрируются иначе. Для выбора направления используют узкие трубки, отсекающие кванты, приходящие сбоку, а приемником служит сцинтиллятор, в котором энергичные кванты ионизируют атомы. Вновь объединяясь с электронами, атомы испускают видимое или ультра фиолетовое излучение, которое регистрируют при помощи фотоэлектронных умножителей. По сути, в таких телескопах ведется подсчет отдельных квантов излучения и уже потом при помощи компьютера формируется изображение.
Изображение Солнца в рентгеновском диапазоне с новой орбитальной обсерватории SDO (Solar Dynamics Observatory). Большинство специализированных космических обсерваторий занимаются изучением Солнца. Некоторые из них, например SOHO (Solar and Heliospheric Observatory), работают в точке Лагранжа L1 и никогда не попадают в земную тень. Но поскольку SDO должна передавать огромный поток данных, она помещена ближе к Земле — на геостационарную орбиту. Фото: NASA; NASA, ESA AND THE HUBBLE HERITAGE TEAM (STSCI/AURA)
Тепло и холод
Интерес астрономов к рентгеновскому и окружающим его ультрафиолетовому и гамма-диапазонам был столь велик, что за первые 15 лет развития космической астрономии не было запущено ни одной обсерватории для наблюдений в других диапазонах. Только в 1983 году NASA отправило на орбиту инфракрасную обсерваторию IRAS, которая за 10 месяцев построила первую в мире тепловую карту неба.
Впрочем, основная причина такой задержки, конечно, не в недостатке интереса. На самом деле создать инфракрасный телескоп сложнее, чем рентгеновский. Да, здесь нет квантов с разрушительной энергией, и зеркала прекрасно отражают инфракрасное излучение. Вот только вдобавок эти зеркала сами его испускают. Если не принимать специальных мер, температура спутника на околоземной орбите составляет 200–300 градусов Кельвина, а значит, все его детали интенсивно светят как раз в том самом инфракрасном диапазоне, в котором планируется вести наблюдения.
Представьте, что линзы вашего фотоаппарата стали светиться, как лампы дневного света. Ясно, что ничего хорошего в кадре не получится. Поэтому всю оптику и детекторы орбитальных инфракрасных телескопов приходится охлаждать жидким гелием, запас которого привозится с Земли в сосуде Дьюара. И как только гелий заканчивается, телескоп выходит из строя. Поэтому раньше инфракрасные обсерватории обычно не работали больше двух лет. Но в последние годы благодаря совершенствованию криогенной техники срок работы обсерваторий удалось продлить. Новая европейская инфракрасная обсерватория «Гершель» рассчитана на три года эксплуатации. Столько же должна проработать микроволновая обсерватория «Планк», требования к охлаждению телескопа которой еще более жесткие.
Большие телескопы
Александр Сергеевич Королев , Андрей Владимирович Фёдоров , Иван Всеволодович Кошкин , Иван Кошкин , Коллектив авторов , Михаил Ларионович Михайлов
Фантастика / Приключения / Боевики / Детективы / Сказки народов мира / Исторические приключения / Славянское фэнтези / Фэнтези / Былины, эпопея