Читаем Журнал «Вокруг Света» №10 за 2005 год полностью

Почему же нейтрино получило репутацию «неуловимой» частицы? Оказывается, не только потому, что она обладает малой массой и не имеет электрического заряда. Главное в том, что реакции нейтрино с другими частицами идут через «слабые» взаимодействия (точнее, кванты слабого поля – бозоны). Для слабых сил даже размеры атомного ядра оказываются слишком большими. Их радиус действия в тысячу раз меньше диаметра ядра. Вот поэтому столкновение нейтрино с другими частицами материи маловероятно. Соответственно, нейтрино обладают совершенно фантастической длиной пробега. Например, 3 из 10 реакторных или солнечных нейтрино сравнительно невысокой энергии, возникающие в ходе реакций ядерного деления в реакторе или ядерного синтеза внутри Солнца, пройдут через стальную стенку толщиной в сотню световых лет (а до Земли от Солнца свет добирается всего за 8 минут). При высоких энергиях пробег нейтрино еще больше. Другой пример, иллюстрирующий ничтожную вероятность нейтринных реакций: за семьдесят лет, средний срок человеческой жизни, в его теле, скорее всего, произойдет лишь одна реакция с участием нейтрино. А ведь каждую секунду через квадратный сантиметр человеческого тела проходит 100 миллиардов только солнечных нейтрино. Поэтому объемы детекторов, в которых могут наблюдаться взаимодействия, нужно делать как можно больше, а уровень «шумов» (любых похожих сигналов, которые могли бы маскировать полезный сигнал) как можно меньше. Наконец, приходится планировать достаточно длительное время измерений. Помимо «высекания» заряженных частиц нейтрино можно обнаружить и с использованием других ядерных реакций.

Нейтринные вспышки

Еще задолго до полномасштабного ввода в строй описанных здесь нейтринных телескопов астрофизикам удалось зарегистрировать нейтрино из другой галактики. Это произошло 23 февраля 1987 года. Тогда в 9.30 по Гринвичскому времени в галактике Большое Магелланово облако астрономы заметили световую вспышку, которая свидетельствовала о взрыве сверхновой звезды. Нейтринных телескопов еще не было, однако действовал ряд других детекторов нейтрино. Один из них был построен американскими физиками (проект IMB) в соляной шахте в штате Огайо на глубине более 600 м под землей и был предназначен для определения временных границ стабильности протона. Черенковское излучение заряженных частиц регистрировалось стенками из ФЭУ в объеме 10 000 тонн чистейшей воды. Другой проект – «Камиоканде» был развернут в Японии вблизи Камиоки на глубине 1 000 м в шахте Мозуми прежде всего для исследований нейтрино, испускаемых нашим Солнцем. Детектор содержал 3 000 тонн очищенной воды и 1 000 фотоумножителей, расположенных по стенкам огромного цилиндрического бака.

После увиденной вспышки обе группы физиков сразу же провели анализ зарегистрированных черенковских следов. В США было обнаружено 8 нейтринных событий за 13 секунд (вместо типичной частоты – одно событие за несколько дней), а в Японии – 11. Обе нейтринные «вспышки» произошли в одно и то же время, в 7.35 по Гринвичу. Обратите внимание на то, что нейтрино добрались до нашей планеты на 2 часа быстрее, чем свет. При этом свету пришлось лететь до Земли 170 000 лет. Разница обусловлена тем, что нельзя считать межзвездную среду полным вакуумом: находящийся там газ тормозит распространение света. «Прозрачность» Вселенной для нейтрино заметно выше, чем для света, и никакие газовые облака не помеха нейтринному потоку. Анализ характеристик пойманных нейтрино позволил определить, что в недрах сверхновой звезды температура в 3 000 раз выше, чем в недрах нашего Солнца, и достигает 45 млрд. градусов.

Исполинские детекторы

Сегодня AMANDA трансформирована в новый проект – «Ледовый куб» (IceCube). По существу, на той же площадке вблизи полярной станции «Амундсен– Скотт» предстоит пробурить с помощью горячей воды еще 80 двухкилометровых шурфов и опустить туда еще 80 струн, на которых будут подвешены 4 800 цифровых оптических модулей. В результате образуется ледяной детектор с километровыми размерами (и с объемом ледового пространства, в котором размещены оптические модули размерами с кубический километр). В результате получится грандиозный телескоп-компьютер, передающий потребителям, где бы они ни находились, весь набор получаемых экспериментальных данных.

Перейти на страницу:

Похожие книги