Цикл сна/бодрствования — одно из самых очевидных проявлений так называемого циркадного (от латинского circa dies — «около суток») ритма. Его влиянию подвержены сотни физиологических и биохимических показателей нашего организма: от таких принципиальных, как температура тела, кровяное давление, частота дыхания и пульса, до самых экзотических. Например, буквально несколько месяцев назад японские ученые установили, что естественное свечение человеческого тела в видимом диапазоне (разумеется, сверхслабое) также закономерно меняется в течение суток: ярче всего мы светимся в 4 часа дня, а в 10 утра интенсивность свечения минимальна.
То что множество протекающих в нашем теле процессов «привязано» к чередованию дня и ночи, само по себе неудивительно. Вопрос в другом: следует ли наш организм внешним сигналам (например, освещенности) или имеет собственные часы? Так, для растений существование внутреннего хронометра было доказано еще в начале XVIII века, для человека же этот вопрос оставался открытым еще в середине ХХ. В 1938 году американский физиолог Натаниэль Клейтман провел 32 дня в Мамонтовой пещере, где ничто не могло указывать на время суток. Его целью было доказать, что циркадный ритм организма человека — лишь отражение воздействий внешней среды и что, изменив эти воздействия, можно переключить организм на любой другой ритм, например 28-часовой. Результаты эксперимента оказались довольно двусмысленными: сопровождавший Клейтмана студент Брюс Ричардсон действительно сумел перестроиться на 28-часовые «сутки», а вот самому Клейтману это так и не удалось.
В 1962 году немецкий физиолог Юрген Ашофф провел сходный опыт: испытуемые (первыми из которых были сыновья исследователя) на четыре недели переселялись в подземный бункер, оборудованный всеми удобствами, но лишенный часов и каких-либо каналов, по которым могла бы поступать информация о времени суток. Но в экспериментах Ашоффа никто не требовал от добровольных отшельников подстраиваться под какой-то заданный ритм — они могли сами устанавливать себе какие угодно «сутки», включая и выключая свет по своему желанию. А экспериментатор записывал циклы сна/бодрствования, температуру тела и другие физиологические и поведенческие показатели.
Результаты эксперимента однозначно свидетельствовали: организм человека располагает собственным механизмом измерения времени и, не имея доступа ни к Солнцу, ни к часам, продолжает отсчитывать суточный ритм. Правда, точность хода наших внутренних часов оставляет желать много лучшего: за сутки они отстают в среднем примерно на час. Впрочем, для наших первобытных предков это было вполне приемлемо: их образ жизни не предполагал ни многодневной разлуки с солнечным светом, ни необходимости в столь дробной единице времени, как час.
Ашофф резонно предположил, что помимо часов наш организм имеет специальное устройство, позволяющее эти часы «подводить» в соответствии с реальным ходом Солнца. Но что представляют собой сами биологические часы и на чем основана их работа?
Компьютерная визуализация математической функции, описывающей запуск циркадного ритма у дрозофилы. Яйца, личинки и куколки дрозофил от момента зачатия содержались в полной темноте и при постоянной температуре. В этих условиях достаточно единственной вспышки света, чтобы запустить «внутренние часы»: через каждые 24 часа после вспышки будет происходить массовое вылупление взрослых мух из куколок (белые точки). Фото: SPL/EAST NEWS
Солнечный ключ к генетическим часам
В 1971 году знаменитый американский генетик Сеймур Бензер и его коллега по Калифорнийскому технологическому институту Рон Конопка изучали регуляцию циркадного ритма у классического объекта генетики — мушки-дрозофилы. Ее естественный цикл активности, как и следовало ожидать, 24-часовой. Но Бензер и Конопка выявили мутантов с 19- и 29-часовыми циклами, а также совсем аритмичных мух, у которых периоды сна и бодрствования чередовались и вовсе случайным образом. Поиск месторасположения всех трех мутаций привел к одному и тому же участку Х-хромосомы, который исследователи назвали Per (от слова period). Это был первый идентифицированный «часовой» ген. Впоследствии оказалось, что Per работает и во внутренних «часах» млекопитающих и что вообще-то генов, участвующих в регуляции суточного ритма, довольно много.
Буквально в последние годы ученым удалось понять, как эти гены взаимодействуют между собой, то есть как фактически сконструировано устройство наших внутренних часов. Выяснилось, что, как и многие придуманные человеком часы, они основаны на колебаниях в системе с отрицательной обратной связью. Только в клеточных часах роль маятников выполняют молекулы внутри каждой клетки нашего организма. А как эти клеточные часы синхронзируются между собой и с реальным временем суток?