Раньше считалось, что взаимодействие с siRNA ведет к немедленному уничтожению матричной РНК, а взаимодействие с miRNA просто блокирует ее до тех пор, пока она не разрушится в клетке естественным путем. Сегодня все уже не так однозначно — обнаружены разрушающие и неразрушающие комплексы RISC, причем и те и другие могут взаимодействовать c обоими типами коротких ДНК.
Пожалуй, самое важное различие между siRNA и miRNA — точность совпадения их последовательности с РНК-мишенью. У siRNA оно абсолютное, и поэтому действие этой молекулы очень избирательное — как правило, она блокирует только одну последовательность матричной РНК, а значит, синтез одного белка. Напротив, miRNA не так хорошо пристает к своей мишени, но зато может связываться сразу с несколькими похожими РНК.
Есть и еще одно несходство: за открытие siRNA Мелло и Файр уже стали нобелевскими лауреатами, а обнаруживший miRNA Амброс своей премии пока так и не дождался.
Сложнее, еще сложнее
Описывать жизнь простой схемой «ДНК — РНК — белок» сейчас действительно кажется наивным. В человеческом геноме уже найдено 695 микроРНК, и скоро это число, возможно, дойдет до 1000. Между тем у человека всего около 20 000 генов, кодирующих белки. Если учесть, что каждая микроРНК влияет на работу нескольких из них, то выходит, что под контроль микроРНК попадает около трети человеческого генома. И это еще консервативные оценки. Самые смелые экстраполяции рисуют картину, в которой число микроРНК превышает число белковых генов. Все это складывается в невыразимо сложную систему регуляции, ведь малые РНК влияют не только на матричные РНК, но и друг на друга. Клетки вырабатывают их, чтобы бороться с вирусами, а вирусы противодействуют этому, внося в клетку свои антипоследовательности.
Этажи регуляции можно надстраивать друг над другом. Например, блокировать miRNA с помощью siRNA, отпуская тем самым тормоз синтеза сразу множества белков. И такие подходы уже используются в терапии. Например, блокируя miR-122, которая встречается в основном в печени, можно лечить гепатит и регулировать синтез холестерина. Опыты на животных показали, что таким способом удается снизить его уровень в крови на 40%.
Новые перспективы открываются и в деле лечения рака. Некоторые виды рака крови, например, сопровождаются повышенной выработкой ряда микроРНК. «Заблокировав» их, можно нарушить развитие раковых клеток. Другие виды рака, наоборот, сопровождаются падением уровня некоторых микроРНК, которые как раз подавляют активность онкогенов.
Одним из кандидатов на роль противоракового средства может оказаться уже ставшая «классикой жанра» микроРНК let-7. Введение ее мышам сильно замедляло развитие у них рака легких. Однако самые большие надежды связываются не с самими микроРНК, эффект от введения которых быстро проходит, а с их использованием в сочетании с другими средствами терапии. Работа одного из первооткрывателей молекулы, Френка Слака, демонстрирует, что введение let-7 делает опухоль чувствительной даже к малым дозам радиации. А другие микроРНК резко повышают эффективность химиотерапии.
Доставка курьером
Успех новых методов терапии с помощью малых РНК зависит от эффективности доставки этих молекул в нужные клетки. Это сложная задача: микроРНК хоть и называются малыми, но все же слишком велики, чтобы самостоятельно проникать в клетки человека. К тому же, циркулируя в кровотоке, эти нестойкие молекулы быстро разрушаются.
На решении транспортной проблемы сегодня сосредоточены громадные усилия ученых и фармакологических компаний. Например, группа под руководством Лифа Хуанга из Университета Северной Каролины включает РНК в самособирающиеся наночастицы из нескольких видов молекул. Один из этих видов «узнается» и активно усваивается клетками некоторых опухолей. Заодно клетка поглощает и наночастицу, которая внутри распаковывается и освобождает siRNA. В опухоли оказывается 70—80% всего введенного в организм препарата — выдающаяся точность доставки!
Другим путем пошла группа исследователей под руководством Премлаты Шанкар из Центра медицинских исследований Техасского технического университета и Сан Кхюн Ли из корейского университета Ханьян. Они сделали конструкцию из siRNA и антител, «узнающих» рецептор на поверхности Т-лимфоцитов. Лифмоцит, на поверхность которого садилось такое антитело, проглатывал его вместе с прикрепленной siRNA, и та блокировала работу генов ВИЧ, поразившего клетку. Именно эта работа и описана в футуристическом духе в начале статьи. Учитывая длительность испытаний и регистрации, новые поколения препаратов от рака и СПИДа могут появиться лет через 7—10. И это хороший повод, чтобы не жалеть о навсегда утраченной простоте генетического кода.
Стремиться к меньшему