Пыль межпланетная, во всяком случае, в сравнительной близости от Земли – материя довольно изученная. Заполняющая все пространство Солнечной системы и сконцентрированная в плоскости ее экватора, она родилась по большей части в результате случайных столкновений астероидов и разрушения комет, приблизившихся к Солнцу. Состав пыли, по сути, не отличается от состава падающих на Землю метеоритов: исследовать его очень интересно, и открытий в этой области предстоит сделать еще немало, но особенной интриги тут, похоже, нет. Зато благодаря именно этой пыли в хорошую погоду на западе сразу после заката или на востоке перед восходом солнца можно любоваться бледным конусом света над горизонтом. Это так называемый зодиакальный – солнечный свет, рассеянный мелкими космическими пылинками.
Куда интереснее пыль межзвездная. Отличительная ее особенность – наличие твердого ядра и оболочки. Ядро состоит, по-видимому, в основном из углерода, кремния и металлов. А оболочка – преимущественно из намерзших на поверхность ядра газообразных элементов, закристаллизовавшихся в условиях «глубокой заморозки» межзвездного пространства, а это около 10 кельвинов, водорода и кислорода. Впрочем, бывают в ней примеси молекул и посложнее. Это аммиак, метан и даже многоатомные органические молекулы, которые налипают на пылинку или образуются на ее поверхности во время скитаний. Часть этих веществ, разумеется, улетает с ее поверхности, например, под действием ультрафиолета, но процесс этот обратимый – одни улетают, другие намерзают или синтезируются.
Сейчас в пространстве между звездами или вблизи них уже найдены, разумеется, не химическими, а физическими, то есть спектроскопическими, методами: вода, оксиды углерода, азота, серы и кремния, хлористый водород, аммиак, ацетилен, органические кислоты, такие как муравьиная и уксусная, этиловый и метиловый спирты, бензол, нафталин. Нашли даже аминокислоту – глицин!
Интересно было бы поймать и изучить межзвездную пыль, проникающую в Солнечную систему и наверняка падающую на Землю. Проблема по ее «отлову» нелегка, потому как сохранить свою ледяную «шубу» в солнечных лучах, тем более в атмосфере Земли, мало какой межзвездной пылинке удается. Крупные слишком сильно нагреваются – их космическая скорость не может быстро погаситься, и пылинки «обгорают». Мелкие, правда, планируют в атмосфере годами, сохраняя часть оболочки, но тут уж возникает проблема найти их и идентифицировать.
Есть еще одна, очень интригующая деталь. Касается она той пыли, ядра которой состоят из углерода. Углерод, синтезированный в ядрах звезд и уходящий в космос, например, из атмосферы стареющих (типа красных гигантов) звезд, вылетая в межзвездное пространство, охлаждается и конденсируется – примерно так же, как после жаркого дня собирается в низинах туман из остывших паров воды. В зависимости от условий кристаллизации могут получиться слоистые структуры графита, кристаллы алмаза (только представьте – целые облака крошечных алмазов!) и даже полые шарики из атомов углерода (фуллерены). А в них, возможно, как в сейфе или контейнере, хранятся частички атмосферы звезды очень древней. Найти такие пылинки было бы огромной удачей.
Надо сказать, что само понятие космического вакуума как чего-то совершенно пустого давно осталось лишь поэтической метафорой. На самом деле все пространство Вселенной, и между звездами, и между галактиками, заполнено веществом, потоками элементарных частиц, излучением и полями – магнитным, электрическим и гравитационным. Все, что можно, условно говоря, потрогать, – это газ, пыль и плазма, вклад которых в общую массу Вселенной, по разным оценкам, составляет всего около 1—2% при средней плотности около 10-24 г/см
Хотя иногда пустота в межзвездном и межгалактическом пространствах почти идеальная: порой на один атом вещества там приходится 1 л пространства! Такого вакуума нет ни в земных лабораториях, ни в пределах Солнечной системы. Для сравнения можно привести такой пример: в 1 см