Читаем Журнал «Вокруг Света» №04 за 2004 год полностью

Программирование — достаточно своеобразное занятие, поскольку сочинять программы приходится на особом компьютерном языке, мало похожем на человеческий. И хотя большинство слов в этом языке пишется английскими буквами, в обычных лексических словарях их не найти. Роль же грамматических правил играют законы логики. Причем строгие законы программирования и обоснования правил составления безошибочных алгоритмов были разработаны математиками еще в 1930-х годах.

Успехи традиционного подхода — когда человек четко задает машине определенную задачу — поистине огромны и вполне устраивают пользователей, стремящихся получить конкретный результат. Однако далеко не все жизненные задачи удается решить путем жесткого программирования действий электронной машины, поэтому одной из важнейших на сегодня задач для кибернетики является создание интеллектуальных систем, способных к самообучению и не нуждающихся в услугах квалифицированных программистов. Разработчики таких обучаемых компьютеров вполне резонно решили воспользоваться методом копирования принципов работы человеческого мозга, и, судя по достигнутым результатам, некоторые из этих умных машин уже приблизились к имитации того, как Homo Sapiens думает и анализирует.

Электронные конкуренты и помощники

Человеческий мозг состоит «всего» из нескольких десятков миллиардов нейронов и нескольких сотен миллиардов связей между ними, причем время реагирования отдельно взятого нейрона измеряется сотыми долями секунды. С высоты «понимания» современных суперкомпьютеров, осуществляющих в секунду десятки триллионов операций, это непозволительно мало. Ведь даже обычный процессор Intel Pentium 4 содержит около 200 миллионов транзисторов, а подключаемая к нему оперативная память имеет объем до 4 Гб, и при этом на простейшую логическую или арифметическую операцию он тратит меньше одной миллиардной доли секунды. Современные нейросети по своей мощности пока достаточно скромны — они достигли только уровня нервной системы улитки или дождевого червя. Однако даже простейшие нейрочипы, содержащие по 64 нейрона со 128 входами каждый, гораздо быстрее решают задачи распознавания электронных изображений, чем их традиционные собратья, снабженные миллионами транзисторов.

Насколько востребованы обычные ЭВМ, всем хорошо известно. Применение же нейрокомпьютеров более специфично и узко. Их используют для диагностики и распознавания, предсказания результатов забегов на ипподроме и цен на акции, оптимизации инвестиций в производство и минимизации транспортных расходов. Основными заказчиками обученных нейросетей пока являются военные, но уже недалеко то время, когда новая технология найдет массовое применение.

Мозговые аналогии

Основным элементом любого нейрокомпьютера является электронный аналог живого нейрона. Биологический нейрон имеет несколько нервных отростков — дендритов, принимающих нервные импульсы, и один-единственный отросток — аксон, способный передавать импульс возбуждения дальше. Аксон, разветвляясь, контактирует с дендритами других нейронов, соединяясь с ними через специальные образования — синапсы, которые влияют на силу передаваемого следующим нейронам импульса.

Импульсы, поступившие к нейрону по нескольким дендритам, суммируются с учетом не только их силы, но и длительности. Если общий импульс превышает некий пороговый уровень, то нейрон возбуждается и формирует собственный импульс, передаваемый далее по аксону. Причем пропускная способность синапсов может изменяться со временем, а значит, модифицируется поведение и соответствующего нейрона, и всей нейронной сети в целом.

Примерно так же работают и электронные нейроны, только роль импульса возбуждения в этом случае выполняет электрическое напряжение, а возбудимость нейрона моделируется некой функцией, зависящей от суммы входных сигналов. Причем сигналы-напряжения, пришедшие по разным проводам-дендритам, перед суммированием умножаются на разные коэффициенты. Естественно, что в процессе обучения и настройки нейросети изменяют именно те коэффициенты, с которыми происходит суммирование сигналов. Коэффициенты, с которыми складываются сигналы, — это как раз и есть та долговременная память, в которой хранится алгоритм работы обученной нейросети. К электрическому аксону подключаются входы нейронов следующего уровня сети, и таким образом реализуется требуемый параллельный вычислитель, способный распознавать и классифицировать поступающие на вход сигналы.

Основное свойство как природных, так и искусственных нейросетей — это возможность изменения силы взаимосвязи между нейронами. Структура нервной системы нашего мозга и нейрокомпьютера остается практически неизменной на протяжении всего жизненного цикла, и изменениям в процессе обучения и адаптации подвергаются только пропускная способность синапсов и весовые коэффициенты, с которыми складываются сигналы в электронном аналоге мозга.

Обучай и используй

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже