Попробуем пофантазировать и представим, что наконец-то решено отправить экипаж, состоящий из людей, скажем, в систему Сатурна. Можно выбрать быстрый перелет с большой тягой: собрать межпланетный корабль на околоземной орбите, выдать при помощи ЖРД мощный разгонный импульс и по гиперболе отправиться в путешествие. Лететь все равно придется долго — несколько лет. Масса топлива нужна огромная. А значит, для снаряжения гигантского корабля потребуется не один десяток сверхтяжелых ракет. Запасы кислорода, воды, пищи и всего, что нужно в межпланетном полете, теряются на фоне огромной массы топлива, необходимого не только для разгона у Земли, но и для торможения у цели путешествия, и для возвращения к родной планете…
А что если попробовать малую тягу? Безумное количество топлива существенно сократится, а срок путешествия, как ни странно, может остаться прежним! Ведь двигатели корабля будут работать всю дорогу — полпути на разгон, а полпути — на торможение. Правда, тягу электрореактивных двигателей придется увеличить в сотни раз по сравнению с теми, что стоят на зонде «Заря». Но во-первых, такие разработки уже ведутся, а во-вторых, двигателей может быть много.
Для питания ЭРД понадобится несколько мегаватт энергии. Вблизи Земли ее можно было бы получать даром — от огромных солнечных батарей площадью тысячи, если не десятки тысяч квадратных метров. Но с удалением от Солнца их эффективность быстро падает: у Марса — на 60%, у Юпитера — в 30 раз. Так что для полетов к планетам-гигантам придется использовать ядерный реактор. И еще, скорее всего, ЖРД все-таки понадобятся для того, чтобы быстрее пройти опасные радиационные пояса вблизи Земли. Видимо, именно комбинированные двигательные установки будут применяться в межпланетных пилотируемых миссиях будущего.
Межпланетный суперхайвей
Станция «Кассини» и траектория ее движения в системе Сатурна. Рис. NASA/ESA
Не только гравитация
Дальний космос таит в себе немало загадок. Казалось бы, что может быть точнее баллистических расчетов, в основе которых лежат законы небесной механики? Не тут-то было! На космический зонд действует множество сил, которые трудно учесть заранее. Давление солнечного излучения и солнечный ветер, магнитные поля планет и истечение газа из самого аппарата — все это сказывается на скорости его движения. Даже тепловое излучение зонда и радиосигнал, посылаемый на Землю узконаправленной антенной, вызывают отдачу, которую приходится учитывать при точной навигации. А то что происходило с уже упоминавшимися «Пионерами», вообще не получило пока должного объяснения. Работающий в NASA российский астрофизик Вячеслав Турышев обнаружил около 10 лет назад, что зонды испытывают очень небольшое аномальное торможение. За 20 лет полета аномалия «Пионеров» привела к тому, что, подлетая к границам Солнечной системы, космические аппараты отклонились от расчетного положения на 400 тысяч километров! Какие только гипотезы не выдвигались для объяснения аномалии. От уже упомянутых магнитных полей и испарения остатков топлива из топливных магистралей до наличия на границах Солнечной системы массивных невидимых объектов. Некоторые физики считают аномалию указанием на неточность современной теории гравитации, другие видят в ней проявление космологических факторов вроде темной материи и темной энергии. Исчерпывающего объяснения пока нет, а группа Турышева продолжает обрабатывать данные о полете «Пионеров». Как бы то ни было, при проектировании новых траекторий межпланетных полетов придется учитывать возможность подобных неожиданных явлений.