Повороты космического аппарата измеряют также с помощью гироскопов — небольших, а иногда и просто миниатюрных маховиков, закрепленных в карданном подвесе и раскрученных до скорости порядка 100 000 об/мин! Такие гироскопы компактнее звездных датчиков, но не годятся для измерения поворотов более чем на 90 градусов: рамки подвеса складываются. Этого недостатка лишены лазерные гироскопы — кольцевые и волоконнооптические. В первом две испущенные лазером световые волны циркулируют навстречу друг другу по замкнутому контуру, отражаясь от зеркал. Поскольку частота волн одинакова, они, складываясь, образуют интерференционную картину. Но при изменении скорости вращения аппарата (вместе с зеркалами) частоты отраженных волн меняются из-за эффекта Доплера и интерференционные полосы начинают двигаться. Подсчитывая их, можно точно измерить, насколько изменилась угловая скорость. В волоконно-оптическом гироскопе два лазерных луча идут навстречу друг другу по кольцевому пути, и при их встрече разность фаз пропорциональна скорости вращения кольца (это так называемый эффект Саньяка). Достоинство лазерных гироскопов в отсутствии механически движущихся частей — вместо них используется свет. Такие гироскопы дешевле и легче привычных механических, хотя практически не уступают им по точности. Но лазерные гироскопы измеряют не ориентацию, а только угловые скорости. Зная их, бортовой компьютер суммирует повороты за каждую долю секунды (этот процесс называется интегрированием) и рассчитывает угловое положение аппарата. Это очень простой способ следить за ориентацией, но, конечно, такие расчетные данные всегда менее надежны, чем результаты прямых измерений, и требуют регулярной калибровки и уточнения.
Кстати, аналогичным образом следят и за изменениями поступательной скорости аппарата. Для ее прямых измерений нужен тяжелый доплеровский радар. Его ставят на Земле, и он измеряет только одну составляющую скорости. Зато не составляет проблемы на борту аппарата измерить его ускорение при помощи высокоточных акселерометров, например, пьезоэлектрических. Они представляют собой специальным образом вырезанные кварцевые пластины размером с английскую булавку, которые деформируются под действием ускорения, в результате чего на их поверхности появляется статический электрический заряд. Непрерывно измеряя его, следят за ускорением аппарата и, интегрируя его (вновь не обойтись без бортового компьютера), вычисляют изменения скорости. Правда, такие измерения не учитывают влияния на скорость аппарата гравитационного притяжения небесных тел.
Точность маневра
Итак, ориентация аппарата определена. Если она отличается от требуемой, немедленно выдаются команды «исполнительным органам», например, микродвигателям на сжатом газе или жидком топливе. Обычно такие двигатели работают в импульсном режиме: короткий толчок, чтобы начать поворот, и тут же новый в противоположном направлении, чтобы не «проскочить» нужное положение. Теоретически достаточно иметь 8—12 таких двигателей (по две пары для каждой оси вращения), однако для надежности их ставят больше. Чем точнее требуется выдерживать ориентацию аппарата, тем чаще приходится включать двигатели, что повышает расход топлива.
Другую возможность управления ориентацией обеспечивают силовые гироскопы — гиродины. Их работа основана на законе сохранения момента импульса. Если под влиянием внешних факторов станция стала разворачиваться в определенном направлении, достаточно «подкрутить» маховик гиродина в ту же сторону, он «примет вращение на себя» и нежелательный поворот станции прекратится.
С помощью гиродинов можно не только стабилизировать спутник, но и менять его ориентацию, причем иногда даже точнее, чем с помощью ракетных двигателей. Но чтобы гиродины были эффективны, они должны обладать большим моментом инерции, что предполагает значительную массу и размеры. Для крупных спутников силовые гироскопы могут быть очень велики. Например, три силовых гироскопа американской станции «Скайлэб» весили по 110 килограммов каждый и делали около 9000 об/мин. На Международной космической станции (МКС) гиродины — это устройства размером с большую стиральную машину, каждое массой около 300 килограммов. Несмотря на тяжесть, использовать их все же выгоднее, чем постоянно снабжать станцию топливом.
Однако большой гиродин нельзя разгонять быстрее нескольких сотен или максимум тысяч оборотов в минуту. Если внешние возмущения постоянно закручивают аппарат в одну и ту же сторону, то со временем маховик выходит на предельные обороты и его приходится «разгружать», включая двигатели ориентации.