Читаем Журнал «Вокруг Света» №10 за 2010 год полностью

Прорыв в области твердотельной генерации света был связан с пионерскими работами Жореса Алферова и Герберта Кремера — нобелевских лауреатов 2000 года. Премию дали не за создание собственно светодиодной технологии, а за «работы по получению полупроводниковых структур, которые могут быть использованы для сверхбыстрых компьютеров». Но именно на этих гетероструктурах в 1970 году в ленинградском Физико-техническом институте им. А.Ф. Иоффе создали первый полупроводниковый лазер, непрерывно работающий при комнатной температуре. Эти научные результаты легли в основу докторской диссертации 35-летнего Алферова. Дальнейшие работы по созданию высокоэффективных светодиодов и лазеров увенчались новым успехом Физтеха — созданием в 1995 году гетеролазера на квантовых точках. По прогнозам, к 2020 году в каждом персональном компьютере будет с десяток лазеров на квантовых точках, используемых для скоростной цифровой связи процессоров, памяти и периферийных устройств. А в патронах ламп появятся «холодные» светодиоды, испускающие поток излучения благодаря тончайшему слою квантовых точек. Это позволит получить действительно приятный для глаза спектр, не теряя в эффективности.

Световая отдача

Центральный элемент полупроводникового диода — p-n-переход. C одной стороны от него, в области n, ток переносят электроны, а с другой стороны, в области p, — дырки, то есть свободные места в кристаллической структуре полупроводника, где электрона не хватает. При пропускании тока электроны и дырки движутся навстречу друг другу. В области p-n-перехода электроны попадают в дырки, заполняют и нейтрализуют их. В этом процессе рекомбинации выделяется энергия.

Далеко не всегда эта энергия испускается в виде света, то есть фотонов. Например, кремний, основной материал электроники, устроен так, что свободные электроны и дырки рекомбинируют, порождая слабенькую акустическую волну — фонон, — которая быстро рассеивается, переходя в тепло. Поэтому микросхемы греются, а не светятся.

Но в некоторых полупроводниках рекомбинация сопровождается испусканием кванта света, энергия которого зависит от разности энергий электрона и дырки — она примерно постоянна для каждого полупроводника. Например, арсенид галлия служит для создания инфракрасных и красных светодиодов. Тройное соединение галлия, мышьяка и фосфора дает более яркие красные светодиоды, а также желто-зеленые. Различные соединения, содержащие алюминий, индий, галлий и фосфор, стали основой для ярких светодиодов красного, оранжевого и желтого свечения. Фосфид галлия со специальными оптически активными примесями дает зеленое свечение. Нитрид галлия — основной современный материал для ультрафиолетовых, синих и зеленых светодиодов.

Светодиодная лампа (внутреннее устройство)

1. Массив светодиодных модулей, обеспечивающий требуемую яркость лампы

2. Резистор, ограничивающий рабочий ток

3. Пластиковый корпус светодиодной 12-вольтовой лампочки

Единичный светодиод не может излучать белый свет, поскольку энергия испускаемых им фотонов примерно одинакова. По этому для имитации естественного дневного света обычно используют либо матрицы из разноцветных диодов, либо явление люминесценции. Сегодня большинство белых светодиодов — синие или даже ультрафиолетовые, но благодаря слою люминофора их излучение трансформируется в свет, близкий к белому.

Внутренний квантовый выход современных полупроводниковых светящихся кристаллов близок к 100%. То есть каждая пара «электрон — дырка» дает фотон. Если бы все эти фотоны, рожденные в глубине светодиода, выходили наружу, такой источник практически не нагревался бы и всю подведенную энергию превращал в свет. Но, конечно, часть фотонов поглощается внутри кристалла, не успевая дойти до его поверхности. Снижение таких потерь — одно из основных направлений совершенствования светодиодов. Для этого осваивают новые материалы,  используют так называемые гетероструктуры, состоящие из множества тончайших слоев различных полупроводников, чередующихся в определенной последовательности. В результате КПД светодиодов, который у первых промышленных устройств был меньше 1%, удалось поднять выше 50%, а световая отдача выросла с 1 до 150 люмен на ватт, что вдвое больше, чем у энергосберегающих люминесцентных ламп. Теоретический максимум светоотдачи для совершенно идеального источника белого света около 250 лм/Вт, так что до предела осталось не так уж и далеко. Как говорят специалисты, этот уровень светоотдачи будет достигнут уже в ближайшем десятилетии.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже