Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке — фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе — они усиливают друг друга, в противофазе — ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друг друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.
В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)
Командная игра
Однако можно поступить и по-другому. Вместо того чтобы сводить все лучи в одну точку, мы можем измерить и записать колебания электрического поля, порождаемые каждым из них на поверхности зеркала (или в другой точке, через которую проходит тот же луч), а затем «сложить» эти записи в компьютерном устройстве обработки, учтя фазовый сдвиг, соответствующий расстоянию, которое каждой из волн оставалось пройти до воображаемого фокуса антенны. Прибор, действующий по этому принципу, называется интерферометром, в нашем случае — радиоинтерферометром.
Интерферометры избавляют от необходимости строить огромные цельные антенны. Вместо этого можно расположить рядом друг с другом десятки, сотни и даже тысячи антенн и объединять принятые ими сигналы. Такие телескопы называются синфазными решетками. Однако проблему «зоркости» они все же не решают — для этого нужно сделать еще один шаг.
Как вы помните, с ростом размера радиотелескопа его чувствительность растет гораздо быстрее, чем разрешающая способность. Поэтому мы быстро оказываемся в ситуации, когда мощности регистрируемого сигнала более чем достаточно, а углового разрешения катастрофически не хватает. И тогда возникает вопрос: «Зачем нам сплошная решетка антенн? Нельзя ли ее проредить?» Оказалось, что можно! Эта идея получила название «синтеза апертуры», поскольку из нескольких отдельных независимых антенн, размещенных на большой площади, «синтезируется» зеркало гораздо большего диаметра. Разрешение такого «синтетического» инструмента определяется не диаметром отдельных антенн, а расстоянием между ними — базой радиоинтерферометра. Конечно, антенн должно быть по крайней мере три, причем их не следует располагать вдоль одной прямой. В противном случае разрешение радиоинтерферометра получится крайне неоднородным. Высоким оно окажется только в направлении, вдоль которого разнесены антенны. В поперечном же направлении разрешение по-прежнему будет определяться размером отдельных антенн.
По этому пути радиоастрономия стала развиваться еще в 1970-х годах. За это время был создан ряд крупных многоантенных интерферометров. У некоторых из них антенны неподвижны, у других могут перемещаться по поверхности земли, чтобы проводить наблюдения в разных «конфигурациях». Такие интерферометры строят «синтезированные» карты радиоисточников с гораздо более высоким разрешением, чем одиночные радиотелескопы: на сантиметровых волнах оно достигает 1 угловой секунды, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.
Самая известная система такого типа — «Очень большая решетка» ( Very Large Array, VLA ) — построена в 1980 году в Национальной радиоастрономической обсерватории США. Ее 27 параболических антенн каждая диаметром 25 м и весом 209 тонн перемещаются по трем радиальным рельсовым путям и могут удаляться от центра интерферометра на расстояние до 21 км.
Сегодня действуют и другие системы: Вестерборк в Голландии (14 антенн диаметром 25 м), ATCA в Австралии (6 антенн по 22 м), MERLIN в Великобритании. В последнюю систему наряду с 6 другими инструментами, разбросанными по всей стране, входит и знаменитый 76-метровый телескоп. В России (в Бурятии) создан Сибирский солнечный радиоинтерферометр — специальная система антенн для оперативного изучения Солнца в радиодиапазоне.
Тарелка диаметром 25 метров и весом 240 тонн в долине Оуэнс, США, — один из 10 инструментов американской сети РСДБ
Размером с земной шар