Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

Математика – другое дело. Математика имеет долгую и поступательную историю. С той поры как древние вавилоняне научились решать квадратные уравнения, – а произошло это, вероятно, около 2000 г. до н. э., хотя первые доказательства датируются примерно 1500 г. до н. э., – их результат не устарел. Он был верен, и вавилоняне понимали почему. Остается верным он и сегодня. Мы записываем результат при помощи специальных символов, но рассуждаем точно так же, как и они. Неразрывная линия математической мысли прочно соединяет наш завтрашний день с Вавилоном. Когда Архимед получил формулу для объема сферы, он не пользовался алгебраическими символами и не думал о числе , как мы думаем сегодня. Он выражал свои результаты геометрически, в терминах пропорций, как было принято у греков. Тем не менее в его ответе мгновенно распознается эквивалент сегодняшнему

Конечно, помимо тех, что мы видим в математике, есть и другие древние открытия, которые обрели долгую жизнь. Например, Архимедова выталкивающая сила. Или его же закон рычага. Кое-что из древнегреческой физики и инженерного дела живет до сих пор. Но в этих областях знаний долгая жизнь открытий – исключение, тогда как в математике, скорее, правило. «Начала» Евклида, заложившие логический фундамент геометрии, и сегодня выдержат любую проверку. Его теоремы остаются верными, и многие из них по-прежнему полезны. В математике мы движемся вперед, но не отказываемся от ее истории.

Прежде чем вы начнете думать, что математика живет только своим прошлым, я должен указать вам на два момента. С одной стороны, представления о важности тех или иных методов и теорем могут меняться. Целые области математики выходят из моды или устаревают, по мере того как сдвигаются границы известного или внедряются новые методики. Но при этом они по-прежнему остаются верными, а время от времени случается даже так, что какая-то устаревшая область возрождается заново, как правило благодаря появившейся связи с другой областью, какому-нибудь новому приложению или прорыву в методологии. С другой стороны, математики, развивая свой предмет, не просто движутся вперед, а создают попутно новую, важную, красивую и полезную математику.

С учетом сказанного отметим, что основной посыл остается неизменным: математическая теорема, если она однажды верно доказана, становится – навсегда – кирпичиком, на который мы можем в дальнейшем опираться. Несмотря на то что концепция доказательства со времен Евклида стала значительно строже, сегодня, чтобы избавиться от прежних допущений, мы сами можем заполнить то, что нам представляется лакунами, и результат останется прежним.

* * *

Книга «Значимые фигуры» исследует загадочный, почти мистический процесс появления на свет новой математики. Математика возникает не в вакууме; ее создают люди. Среди них встречаются личности с поразительно оригинальным и ясным умом – личности, с которыми мы связываем великие открытия: это пионеры, первопроходцы, значимые фигуры. Историки справедливо указывают, что достижения гениев невозможны без обширной поддержки, без рядовых математиков, добавляющих крохотные кусочки и детальки в общую картину головоломки. Важные и плодотворные вопросы задают иногда почти неизвестные люди. Великолепные идеи порой осеняют тех, кому попросту не хватает технической подготовки, чтобы превратить их в новые мощные методы и концепции. Ньютон, как он сам отмечал, «стоял на плечах гигантов». В какой-то степени это его замечание отдает сарказмом, ведь некоторые из этих гигантов (в особенности Роберт Гук) жаловались, что Ньютон не столько стоял на их плечах, сколько постоянно наступал на ноги: он либо не отдавал им должного и не признавал их заслуг, либо, ссылаясь на их достижения в своих научных работах, публично приписывал все результаты исключительно себе. Однако Ньютон говорил правду: его великолепный синтез законов движения, гравитации и света был бы невозможен без огромного числа озарений интеллектуальных предшественников. Из которых, надо сказать, не все были гигантами. Обычные люди тоже сыграли здесь свою роль.

Тем не менее гиганты всегда заметны; они возглавляют движение, а мы, остальные, следуем за ними. Через биографии и труды отдельных значимых фигур мы можем получить общее представление о том, как рождается новая математика, кто ее создавал и как жили эти люди. В моем представлении это не просто пионеры, показавшие остальным путь, но первопроходцы, проложившие удобные и общедоступные тропы через густые джунгли математической мысли. Большую часть жизни они пробивались сквозь колючие кустарники и ненасытные трясины, но иногда натыкались на какой-нибудь затерянный город или месторождение и находили там бесценные сокровища. Они проникали в области мысли, прежде неизвестные человечеству.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука