Необычайные математические способности не коррелируют, вообще говоря, с другими качествами. Судя по всему, они достаются людям случайно. Некоторые, такие как Гаусс, проявляют их уже в три года. Другие – и среди них Ньютон – детство растрачивают понапрасну, но расцветают позже. Маленькие дети, как правило, с удовольствием занимаются числами, фигурами и геометрическими узорами, но с возрастом многие теряют интерес к подобным вещам. Большинство из нас способны освоить математику в объемах школьной программы, но немногие готовы идти дальше. Некоторые в принципе не в состоянии освоить этот предмет. Многие профессиональные математики склоняются к мнению, что там, где речь идет о математических способностях, люди не рождаются равными. Если вам лично большая часть школьной математики кажется простой и очевидной, тогда как другие с трудом осваивают самые ее начала, впечатление создается именно такое. Если же одни ваши студенты спотыкаются на простых концепциях, а другие мгновенно схватывают сложные, это ощущение только усиливается.
Возможно, подобных субъективных свидетельств недостаточно; возможно, они ведут в неверном направлении. Так думают многие специалисты по психологии образования. В психологии существует мода на представление о разуме ребенка как о «чистом листе». Любой человек может заниматься чем угодно: все, что для этого нужно, – это обучение и много-много практики. И если вы захотите достаточно сильно, то сможете этого добиться. (А если не добьетесь, то это будет означать, что вы хотели недостаточно сильно… прекрасный пример порочного замкнутого круга в рассуждениях, столь любимого спортивными комментаторами.) Было бы прекрасно, если бы дело обстояло именно так, но Стивен Пинкер уже детально проанализировал эту политически корректную надежду в книге «Чистый лист» (The Blank Slate). Кроме того, многие работники образования встречают у своих учеников такое нарушение здоровья, как дискалькулия, которая мешает обучению математике точно так же, как дислексия мешает чтению и письму.
Физически мы не рождаемся одинаковыми. Но многие люди почему-то думают – или хотят думать, – что у нас одинаковые умственные способности. В этом мало смысла. Структуры мозга влияют на умственные способности, так же как структуры тела влияют на физические характеристики человека. Одни люди обладают фотографической памятью и запоминают все в подробностях. Представляется маловероятным, что любого человека можно научить фотографической памяти, если только не затратить достаточно усилий на обучение и практику. Гипотезу чистого листа часто оправдывают указанием на то, что почти каждый, кто добивается серьезных успехов в какой-то области человеческой деятельности, много практикуется в ней. Это правда – но это не значит, что каждый, кто много практикуется в какой-либо области человеческой деятельности, сможет добиться в ней серьезного успеха. Аристотель и Буль хорошо знали, что «из B следует A» – не то же самое, что «из A следует B».
Прежде чем вы рассердитесь, поясню: я не против того, чтобы пытаться учить математике или чему бы то ни было всех без исключения. Каждому из нас будут полезны хорошее преподавание и практика, о какой бы области человеческой деятельности ни шла речь. Именно поэтому образование стоит свеч. Дьёрдь Пойа в книге «Как решать задачу» (How to Solve It) привел несколько полезных трюков. Эта книга немного напоминает самоучители на тему «как обрести суперпамять», но направлена на решение математических задач. Однако люди с фотографической памятью не пользуются мнемоническими фокусами. То, что они хотят вспомнить, всплывает в их памяти сразу же, как только им это потребуется. Аналогично, даже если вы овладеете всеми фокусами мастера Пойа, вы вряд ли станете новым Гауссом, сколько бы труда вы в это ни вложили. Гауссов этого мира не нужно учить разным фокусам. Они сами придумывают их для себя, еще в колыбели.