Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

Имеются косвенные свидетельства того, что со временем Ферма отказался от мысли о том, что владеет доказательством. Он имел обыкновение включать свои теоремы в письма в качестве головоломок, которые другим математикам предлагалось решить (и по крайней мере один из них жаловался на чрезмерную сложность заданий). Однако ни в одном из сохранившихся его писем не упоминается эта теорема. Что еще более показательно, Ферма предложил в качестве задач своим корреспондентам два ее частных случая, с кубами и четвертыми степенями. Зачем бы он стал это делать, если бы мог доказать более общий вариант? Он наверняка мог доказать теорему для случая с кубами, и мы знаем, как он доказывал ее для четвертых степеней. Мало того, это доказательство – единственное во всех оставленных им работах и бумагах. В формулировке Ферма это утверждение выглядело так: «Площадь прямоугольного треугольника не может быть квадратом». Очевидно, по замыслу автора эта формулировка должна была вызывать в памяти Пифагоровы тройки. Из Евклидова алгоритма решения диофантовых уравнений легко следует, что эта задача эквивалентна нахождению двух квадратов, дающих в сумме четвертую степень. Если бы решение уравнения x4 + y4 = z4 с показателем степени 4 существовало, то и x4, и y4 были бы квадратами (x2 и y2 соответственно); тогда из утверждения Ферма следует, что такого решения не существует.

Его доказательство было изящно и сделано по тем временам радикально новым методом, который сам он назвал методом бесконечного спуска. Предположим, что решение существует; тогда, применив алгоритм Евклида и немного повозившись, можно прийти к выводу, что существует и еще одно, меньшее решение. Следовательно, говорит Ферма, можно построить бесконечную цепочку решений, которые с каждым шагом будут становиться все меньше и меньше. Поскольку любая нисходящая цепочка такого рода, составленная из положительных целых чисел, в конце концов должна будет закончиться, возникает логическое противоречие. Значит, гипотетическое решение, с предположения о существовании которого мы начали свои рассуждения, не может существовать в действительности.

* * *

Возможно, Ферма намеренно скрывал свои доказательства. Судя по всему, он любил пошутить и ему нравилось помучить собратьев-математиков, представляя им свои изыскания в виде загадок. Его замечание на полях не единственное, в котором объявлялся некий важный результат, а затем следовали извинения за отсутствие доказательств. Декарт считал Ферма фанфароном, а Валлис называл его не иначе как «этот проклятый француз». Как бы то ни было, его тактика – если так и было задумано – работала. После смерти Ферма – да и при его жизни тоже – великие математики считали своим долгом довести до ума и отшлифовать какую-нибудь из головоломок, которые Ферма оставил потомкам. Эйлер, к примеру, объявил, что нашел доказательство теоремы для третьих степеней (сумма двух кубов не может быть кубом) в 1753 г. в письме к своему другу Христиану Гольдбаху. Сегодня мы понимаем, что в его доказательстве имелся пробел, но заполнить его было относительно несложно, так что первое опубликованное доказательство этого случая обычно признают за Эйлером. Адриан-Мари Лежандр доказал Великую теорему для пятых степеней в 1825 г., а Петер Дирихле доказал ее для 14-х степеней в 1832 г. и попытался – неудачно – доказать для седьмых; этот результат, вероятно, можно было бы спасти, если бы автор нацелился на что-нибудь попроще. Габриель Ламе разобрался с седьмыми степенями в 1839 г., а в 1847 г. изложил основные идеи общего доказательства в Парижской академии наук. В его доказательстве был задействован аналог разложения на простые множители для особого типа комплексных чисел.

Сразу же после его выступления встал Жозеф Лиувиль, который указал на возможную ошибку в методе Ламе. Для обычных чисел разложение на простые множители всегда единственно: если оставить в стороне порядок записи множителей, то сделать это можно только одним способом. К примеру, число 60 раскладывается на простые множители как 22 × 3 × 5, и существенно этот набор изменить нельзя. Лиувиль опасался, что для предложенного Ламе класса комплексных чисел факторизация может оказаться не единственной. Со временем его опасения оправдались: впервые это свойство нарушается для 23-х степеней.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
10 гениев спорта
10 гениев спорта

Люди, о жизни которых рассказывается в этой книге, не просто добились больших успехов в спорте, они меняли этот мир, оказывали влияние на мировоззрение целых поколений, сравнимое с влиянием самых известных писателей или политиков. Может быть, кто-то из читателей помоложе, прочитав эту книгу, всерьез займется спортом и со временем станет новым Пеле, новой Ириной Родниной, Сергеем Бубкой или Михаэлем Шумахером. А может быть, подумает и решит, что большой спорт – это не для него. И вряд ли за это можно осуждать. Потому что спорт высшего уровня – это тяжелейший труд, изнурительные, доводящие до изнеможения тренировки, травмы, опасность для здоровья, а иногда даже и для жизни. Честь и слава тем, кто сумел пройти этот путь до конца, выстоял в борьбе с соперниками и собственными неудачами, сумел подчинить себе непокорную и зачастую жестокую судьбу! Герои этой книги добились своей цели и поэтому могут с полным правом называться гениями спорта…

Андрей Юрьевич Хорошевский

Биографии и Мемуары / Документальное
Клуб банкиров
Клуб банкиров

Дэвид Рокфеллер — один из крупнейших политических и финансовых деятелей XX века, известный американский банкир, глава дома Рокфеллеров. Внук нефтяного магната и первого в истории миллиардера Джона Д. Рокфеллера, основателя Стандарт Ойл.Рокфеллер известен как один из первых и наиболее влиятельных идеологов глобализации и неоконсерватизма, основатель знаменитого Бильдербергского клуба. На одном из заседаний Бильдербергского клуба он сказал: «В наше время мир готов шагать в сторону мирового правительства. Наднациональный суверенитет интеллектуальной элиты и мировых банкиров, несомненно, предпочтительнее национального самоопределения, практиковавшегося в былые столетия».В своей книге Д. Рокфеллер рассказывает, как создавался этот «суверенитет интеллектуальной элиты и мировых банкиров», как распространялось влияние финансовой олигархии в мире: в Европе, в Азии, в Африке и Латинской Америке. Особое внимание уделяется проникновению мировых банков в Россию, которое началось еще в брежневскую эпоху; приводятся тексты секретных переговоров Д. Рокфеллера с Брежневым, Косыгиным и другими советскими лидерами.

Дэвид Рокфеллер

Биографии и Мемуары / История / Образование и наука / Документальное