Во времена Канта можно было думать, что существовавшие тогда представления о пространстве и времени обладают такой же степенью общности и так же непосредственно связаны с действительностью, как, например, представления о числе, упорядоченности и величине, которые мы постоянно и привычно используем в математических и физических теориях. При таком подходе теория пространства и времени, в частности геометрия, должна быть чем-то таким, что так же, как и арифметика, предшествует всему естествознанию. Но от точки зрения Канта отказались еще до того, как этого потребовало развитие физики, в частности Риман и Гельмгольц, причем с полным основанием, ибо геометрия есть не что иное, как та самая часть общей физической системы понятий, которая отображает возможные взаимосвязи между положениями твердых тел в мире реальных вещей. Разумеется, то, что вообще существуют подвижные твердые тела и каковы взаимосвязи между положениями тел,— дело опыта. Теорема о том, что сумма углов в треугольнике равна двум прямым углам, также может быть установлена или опровергнута с помощью опыта, о чем знал еще Гаусс. Например, если бы было доказано, что все факты, выражаемые теоремами о конгруэнтности, соответствуют опыту, а сумма углов в некотором треугольнике, построенном из твердых тел, оказалась меньше двух прямых углов, то никто не стал бы утверждать, что аксиома о параллельных должна выполняться в пространстве реальных тел.
Принимая априорную точку зрения, необходимо соблюдать величайшую осторожность; ведь многое из того, что когда-то было принято считать априорным знанием, ныне признано совершенно неприемлемым. Наиболее яркий тому пример — представление об абсолютной синхронности. Абсолютная синхронность не существует, как ни привыкли мы к этому представлению с детства, поскольку в повседневной жизни речь идет лишь о небольших расстояниях и медленных движениях. Если было бы иначе, то никому не пришло бы в голову вводить абсолютное время. Но даже такие глубокие мыслители, как Ньютон и Кант, неоднократно высказывали сомнение в абсолютном времени. Осторожный Ньютон сформулировал требование абсолютности времени предельно четко: абсолютное истинное время течет само по себе и в силу своей природы равномерно и безотносительно к какому-либо телу. Тем самым Ньютон честно отрезал все пути к отступлению и компромиссу, а Кант, критически мыслящий философ, оказался совсем не критичным, поскольку без каких-либо оговорок принял точку зрения Ньютона. И только Эйнштейн решительно освободил нас от предрассудка абсолютного времени — и это навсегда останется одним из величайших достижений человеческого духа. Теория гравитации Эйнштейна показала со всей очевидностью, что геометрия есть не что иное, как ветвь физики; геометрические истины во всех отношениях устанавливаются так же, как физические истины, и ничем не отличаются от последних. Например, теорема Пифагора и закон всемирного тяготения Ньютона взаимосвязаны, поскольку они оба подчиняются одному и тому же фундаментальному физическому понятию — потенциалу. Но для каждого, кто знаком с теорией гравитации Эйнштейна, не подлежит сомнению, что оба эти закона, столь различные внешне и считавшиеся ранее столь далекими, один из которых стал известен еще в древности и был одной из первых теорем, изучаемых в школе, а другой описывает взаимодействие масс, не только однотипны по своей природе, но и являются лишь частью одного и того же общего закона.
Вряд ли можно привести более поразительный пример принципиальной однотипности геометрических и физических факторов. Однако при обычном логическом построении и в силу повседневного опыта, приобретаемого с детства, геометрические и кинематические теоремы предшествуют теоремам динамики, и именно этим объясняется, что иногда об опыте вообще забывают. Итак, мы видим следующее: в кантовской априорной теории еще содержатся антропоморфные шлаки, от которых ее необходимо очистить, а после их удаления останется лишь та априорная установка, которая лежит в основе чисто математического знания; по существу, это и есть та финитная установка, которую я излагал в различных своих работах.