К чему же ведет такое нарушение? Резерфорд и Лундквист решили выяснить это на примере плодовых мушек, знаменитых дрозофил. В нескольких лабораториях было обнаружено, что у дрозофил можно вызвать такую мутацию в одной из их наследственных молекул, что в результате образующийся в их организме белок HSP-90 окажется «испорченным». Американские исследовательницы предположили, что это должно повлиять на сигнальные процессы в организмах дрозофил, как влияет на эти процессы снижение концентрации этого белка в организме дрожжей, и задались целью детально изучить последствия таких нарушений. Для этой цели они отобрали коллектив мушек-мутантов с испорченным HSP. Когда они стали скрещивать этих дефектных мушек с обычными, у которых HSP не был испорчен мутацией, то убедились, что заметное число потомков таких пар (дефектный – нормальный) тоже обладает аналогичными дефектами.
Что же могло изменить нормальное развитие мушек с «испорченным» HSP-90? Существовали три возможности. Во-первых, такие мутанты могли оказаться просто более чувствительными к микроизменениям окружающей среды, что и вызвало появление дефектов их эмбрионального развития, – напомним, что этот белок, кроме своего действия на сигнальные рецепторы, защищает клетки и от всяких стрессов, вызванных такими микроизменениями.
Во-вторых, могло статься, что HSP-90 каким-то образом участвует в контроле за удвоением наследственных молекул при делении клеток, тогда при его отсутствии или порче это удвоение могло происходить не вполне точно, с генетическими ошибками.
Наконец, была и третья, самая интересная возможность: в аминокислотных цепях сигнальных рецепторов могли существовать какие-то скрытые мутации, какие-то замененные аминокислоты, – напомним, что такие замены, как мы уже говорили, как раз и вызывают нежелательные изменения формы рецептора. Пока белок HSP-90 «насильственно» удерживал рецептор в нужной (нормальной) форме, влияние этих скрытых мутаций не могло проявиться, но как только его стабилизирующее наружное действие было устранено (из-за его порчи), эти скрытые мутации дали о себе знать. Они изменили форму рецептора, это повлияло на передачу сигналов, а искаженные сигналы вызвали аномальное развитие клеток. Как уже было описано выше, клетки эмбриона, которые должны были получить сигнал на специализацию в клетки глаза, при искажении сигнала могли специализироваться в клетки конечностей и т.п.
Почему третья возможность – «самая интересная»? Потому что в этом случае вырисовывается вероятная картина молекулярного механизма ускоренной эволюции под стрессом: стресс отвлекает часть молекул HSP-90 от задачи стабилизации сигнальных рецепторов, это позволяет «проявиться» сразу всем тем скрытым мутациям, которые накоплены в сигнальных рецепторах за предшествующие поколения; а проявление сразу большого числа ранее накопленных мутаций как раз и обеспечивает то ускоренное возникновение многочисленных разновидностей, которое никак нельзя было объяснить одновременным появлением всего этого множества мутаций как раз в процессе стресса.
Иными словами, загадка ускоренной эволюции под стрессом решалась бы именно тем, что эта быстрота обусловлена не одновременным появлением множества новых мутаций, а одновременным проявлением множества мутаций, накопленных ранее, но до поры до времени (стресса) скрытых.
Теперь мне остается лишь сказать, что последующие эксперименты Резерфорд и Лундквист подтвердили именно эту, третью возможность.
Попутно выявилось еше одно интереснейшее обстоятельство. Оказалось, что если скрещивать дефектных мушек до шестого-седьмого поколения, то проявление некоторых дефектов (например, глаза и крыла) перестает зависеть от наличия или отсутствия HSP-90. Как это понимать?
Резерфорд и Лундквист объяснили это тем, что существует, видимо, какой-то порог проявления скрытых мутаций: если их число в молекуле рецептора ниже определенного, «порогового» значения, они могут влиять на форму рецептора только при полном отсутствии HSP-90, но если их число выше этого порога, они проявляются (то есть влияют на рецептор и меняют сигнальные пути, что приводит к появлению дефектных эмбрионов) независимо от стабилизирующего действия защитного белка. Грубо говоря, способность скрытых мутаций влиять на аминокислотную цепь рецептора становится больше способности HSP-90 удерживать эту цепь от таких влияний. Иначе говоря, с увеличением числа поколений происходит накопление скрытых мутаций, ведущее в конце концов к их проявлению даже вопреки действию HSP-90.