На этих расстояниях радиус кривизны в силу появляющихся теперь квантовых законов принимает лишь некоторые вполне определенные, дискретные значения — как радиусы электронных орбит в атомах. На каждой из них квантовые законы (так называемый принцип Паули) разрешают находиться только ограниченному числу электронов. Лишним приходится занять следующую, более широкую траекторию, если, конечно, электромагнитное поле достаточно сильное, чтобы их удержать там. Наблюдаемое в опытах ступенчатое изменение электрического сопротивления холловскому току как раз и соответствует набору таких орбит-траекторий.
Если продолжить аналогию с орбитами атомов, то можно представить себе, что, подобно атомарным электронам, переносчики тока в опытах с низкотемпературным эффектом Холла движутся по круговым траекториям, не теряя энергии, то есть вещество становится для них сверхпроводником. Потери на нагревание вещества с резким возрастанием электрического сопротивления происходят лишь при тех значениях магнитного поля, которые соответствуют узким промежуточным интервалам. Это как раз и есть те дорожные ухабы, о которых говорилось выше. Ступенчатое сопротивление токи встречают лишь в поперечной цепи, где их траектории смещаются усилиями внешнего поля, а в продольном направлении напряжение включенной батареи, как ветер, гонит петли круговых токов по цепи.
У читателя, возможно, возникло уже немало «как» и «почему». К сожалению, пока для них нет полного ответа. Возможно, его удастся найти где-нибудь в квантовой теории — там еще много потаенных уголков, куда не заглядывали физики, — но скорее всего для этого потребуется новая теория внутривакуумных процессов. О том, что это так, говорят и другие удивительные результаты опытов с токами Холла.
Еще один сюрприз ожидал физиков при дальнейшем понижении температуры и использовании еще более сильных магнитных полей. Как говорилось, лестница сопротивлений холловскому току определяется набором целых чисел — ее низкие ступени соответствуют широким орбитам с большим числом планет-электронов, удерживаемых не очень сильным магнитным полем. Самая высокая ступенька согласуется с самой сжатой круговой траекторией с одним электроном. И это — все, более высоких ступеней быть не должно. Дальнейшее увеличение магнитного поля лишь расширяет ступеньку, превращает ее в длинную площадку. Если верна описанная в предыдущем разделе модель, ничего другого и быть не может.
Можно представить себе удивление физиков, когда за самой высокой и широкой ступенькой вдруг обнаружилась еще одна, отвечающая дробному числу 1/3! Неужели наконец-то удалось обнаружить присутствие в веществе дробно-заряженных кварков, за которыми уже несколько десятилетий охотятся во всех странах?!
Однако от этого взволновавшего всех физиков вывода (благодаря Интернету новости теперь распространяются мгновенно) вскоре пришлось отказаться. Дальнейшие эксперименты обнаружили между целочисленными ступеньками множество дробных, соответствующих не только кварковому заряду 1/3, но и другим комбинациям целых чисел: 2/5, 3/7, 7/5 и так далее. Трудно предполагать, что в природе существует так много неизвестных нам ранее и ничем не проявлявших себя элементарных частиц.
Объяснение, правда, опять неполное, использующее ряд гипотез, удалось получить путем усложнения картины двумерных токов. Квантовые законы действительно разбрасывают электроны по разным траекториям, не позволяя им собраться вместе и сконденсироваться, подобно молекулам воды, в «электронную жидкость». Такой запрет распространяется на все частицы с полуцелыми значениями спинов — на электроны и позитроны, протоны и нейтроны, нейтрино и тому подобное. Вместе с тем частицы с целочисленными спинами могут конденсироваться в жидкость. Например, атомы водорода, в которых полуцелые спины протона и электрона, складываясь, образуют целочисленный спин, равный нулю или единице. Электронный газ внутри вещества тоже может образовать жидкий конденсат, если электроны объединятся в пары — так происходит при низких температурах, когда образуется текущая без сопротивления жидкость «слипшихся» электронных пар и мы имеем дело со сверхпроводимостью.
Почему природа наложила столь строгое ограничение на частицы с полуцелым спином — это пока остается для нас загадкой. Но как бы там ни было, сегодня это — твердо установленный экспериментальный факт.
Так вот, квантовые расчеты убеждают в том, что при определенных условиях электроны способны образовать еще несколько типов сверхтекучих жидкостей. Это может происходить в магнитных полях при низких температурах, когда частица с целочисленным спином возникает благодаря объединению электрона с несколькими квантами магнитного поля.