Итак, мы обязаны своим существованием нарушению симметрии, этому дефекту законов природы? В Божественный план, по которому создавался космос, изначально вкралась ошибка? Мир должен быть рожден, как рождаются в вакууме виртуальные пары частиц и античастиц, — рождаются, чтобы сразу исчезнуть? Здесь это правило не сработало.
Но если наш мир обязан своим существованием асимметрии, то где именно она вкралась в скрижали законов природы? Почему череда частиц оказалась протяженнее когорты античастиц? Почему одних много, других мало?
Чтобы ответить на эти вопросы, исследователи CERN не так давно сравнили массу протонов и антипротонов. По всем физическим законам масса тех и других должна быть одинакова. В противном случае пришлось бы говорить о нарушении Стандартной модели физики.
В самом деле, массы протонов и антипротонов совпали, по крайней мере, вплоть до десятого знака после запятой. Итак, симметрия соблюдена? Предположительно. Исследования будут продолжены в ближайшие годы. Пошатнут ли они привычную теорию? Поколеблют ли полувековой фундамент физики?
Другой любопытный эксперимент, длившийся несколько лет (1999- 2004), был проведен в США, на Стэнфордском ускорителе. Здесь удалось доказать, что при распаде В-мезонов и их античастиц, анти-В-мезонов, действительно нарушается симметрия.
В общей сложности ученые наблюдали 200 миллионов случаев распада мезонов. В 910 случаях В-мезоны распадались на каон и пион, а вот анти-В-мезоны распадались подобным образом лишь 696 раз. Если бы вещество и антивещество были абсолютно симметричны, то показатели распада частиц и античастиц были бы примерно одинаковы (подробнее о ходе эксперимента смотрите "3-С", 8/2001).
Доя подобных экспериментов нужно антивещество. По оценке НАСА, стоимость одной миллиардной доли его грамма достигает сейчас примерно шести миллиардов долларов. Получить наяву эти призрачные частицы, не способные прижиться в нашем Космосе, можно лишь с помощью гигантских ускорителей, разгоняя до невероятных скоростей и сталкивая друг с другом частицы нормального вещества.
Производство антивещества пока в высшей степени неэффективно. Сперва нужно затратить шромное количество энергии, чтобы затем — когда-нибудь — использовать энергию, таящуюся в антивеществе.
Да и много ли ее "таится" в современных лабораториях? Сейчас в магнитных ловушках крупнейших ускорителей мира можно удержать до миллиона античастиц. Этого достаточно для научных целей, но никак не для нужд военного ведомства или атак вымышленных террористов. И вообще нельзя используемыми ныне методами накопить более ста миллиардов антипротонов — уж слишком велики силы отталкивания их и электронов.
Чтобы наладить производство антивещества, нужно накапливать не антипротоны, а антиатомы — электрически нейтральные образования. Перспективнее всего, говорят физики, наладить производст во антиводорода, поскольку мы располагаем запасами водорода почти в неограниченном количестве.
В лабораторных экспериментах ученым уже удавалось изготавливать атомы антиводорода, в которых вокруг отрицательно заряженного ядра обращается позитрон. Однако они возникают всего на 30 миллиардных долей секунды, и думать об их конденсации в виде крохотных капель или кристаллов пока рановато.
Впрочем, когда-то, в канун Второй мировой войны, и обогащенный уран был едва ли не такой же экзотикой, как в наши дни антивещество. Тогда представлялось невозможным наладить производство одной тонны обогащенного урана. Сейчас накоплены огромные его количества.
И ведь как хорошо было бы, мечтают многие ученые, иметь под рукой запасы антивещества! Использовать его могли бы медики для борьбы с раковыми опухолями, что гораздо эффективнее современной радиотерапии. Частицы (протоны) раковых клеток и античастицы (антипротоны) уничтожались бы, опухоль растаивала бы, как снег под весенними лучами солнца. В то же время антипротоны, в отличие от рентгеновских лучей, не повреждали бы здоровую ткань.
Другие возможные способы применения антивещества связаны с тем, что оно аккумулирует невероятную энергию в крохотном объеме пространства.
•Так, космонавты могли бы получить в свое распоряжение самый эффективный двигатель за всю историю техники. Космический корабль, оборудованный им, разгонялся бы до скорости 100 тысяч километров в секунду, в то время как современные ракеты — где-то до 10 километров в секунду. Для вывода на околоземную орбиту корабля, весящего сто тонн, хватило бы количества энергии, скрытого в брикете антивещества размером с кусочек сахара. Вместо громадных топливных баков — брикеты весом в несколько граммов.