Меррифилд на этом не остановился. Он создал аналогичные установки для синтеза полисахаридов, в которых в цепочку соединяются различные молекулы углеводов и нуклеиновых кислот, фрагментов ДНК и РНК. Как мы увидим в следующей главе, сейчас без этих коротких олигонуклеотидных последовательностей, так называемых праймеров, не обходятся ни генные технологии, ни медицинская диагностика.В 1984 году Меррифилд был удостоен Нобелевской премии по химии. Будь моя воля, я бы присудил ему еще одну Нобелевскую премию за беспрецедентный поступок: ни он сам, ни Рокфеллеровский институт не запатентовали метод твердофазного синтеза, хотя имели для этого все возможности и основания. Они отдали его в безвозмездное пользование людям. Возможно, причина кроется в том, что Меррифилд был бойскаутом и до конца своих дней (он скончался в 2006 году) принимал активное участие в бойскаутском движении вместе с шестью своими детьми. Будь готов! Всегда готов!В настоящее время известно более 3700 ферментов, различающихся по катализируемым ими реакциям, установлена детальная структура большинства из них, многие используются в тонком органическом синтезе, фармацевтической промышленности, бытовой химии, сельском хозяйстве и защите окружающей среды. Между тем бум ферментативного катализа с очевидностью спал. В новостных лентах науки ферменты ушли в тень генных технологий, в промышленных же биотехнологиях, где ферменты работают де-факто, де-юре главенствуют микроорганизмы. Но можно сказать и так: ферменты стали настолько привычным элементом ландшафта науки, что при обсуждении “революционных” нанотехнологий о них зачастую просто забывают.
Падение общественного интереса к ферментам имеет и объективные причины. Эйфория 1970-х годов подогревалась верой во всесилие ферментов – без этапа “великих ожиданий” не обходится развитие ни одной новой области науки и техники.
Между тем ферменты не всесильны. За миллиарды лет эволюции Природа настроила их на осуществление строго определенных процессов, у людей же свои интересы. Нам для удовлетворения наших аппетитов нужно множество веществ и материалов, которые не значились в планах Природы, так что при их производстве природные катализаторы – ферменты нам не помощники. Высокая избирательность ферментов, их главное достоинство, сработала против них.
Кроме того, с нашей человеческой точки зрения ферменты нетехнологичны. Они слишком нежные создания и привыкли работать в тепличных условиях, при температуре живого организма. Стоит чуть поднять температуру (а это стандартный способ увеличения скорости процесса), как их активность падает, а то они и вовсе денатурируют. Да и работать они могут только в водных растворах, а воду технологи терпеть не могут – как растворитель она слишком активна и требует огромных затрат энергии на испарение – то ли дело органические растворители! И наконец, ферменты, по сути дела, катализаторы одноразового использования, их чрезвычайно трудно отделить от продуктов реакции без потери активности. Слишком дорогое получается удовольствие.Специалистам все эти недостатки были понятны с самого начала, просто они в своих полных оптимизма реляциях не акцентировали на них внимание. Но при этом значительную часть усилий направляли на преодоление этих недостатков. Именно энзимологи стали первыми химически “прививать” гомогенные катализаторы к поверхности твердого носителя. Так была решена проблема отделения от продуктов реакции (здесь энзимологи шли по пути, проторенному Меррифилдом) и многократного использования катализатора. В терминах сегодняшнего времени эти работы были примером конструирования нанообъектов. К поверхности неорганического материала – носителя – прививали органическую “ножку” длиной в несколько нанометров, а к ней в свою очередь молекулу фермента диаметром в десятки нанометров.Ученые стали также загонять ферменты в так называемые обращенные мицеллы. Это такие ассоциаты обычных поверхностно-активных веществ, растворенных в органических растворителях. В отличие от прямых мицелл, о которых я уже упоминал, в обращенных мицеллах полярные головки молекул ПАВ обращены внутрь, а углеводородные хвосты торчат наружу, как иглы ежа. И если прямые мицеллы способны поглощать органические вещества, то обращенные – воду, превращаясь, грубо говоря, в капельку воды диаметром в единицы и десятки нанометров, покрытую мономолекулярным слоем ПАВ. Если мы поместим в ядро обращенной мицеллы молекулу фермента, то он, находясь в привычной для него среде обитания, будет вести свойственные ему химические реакции, но формально процесс будет протекать в органическом растворителе, который служит резервуаром вещества, подвергаемого ферментативному превращению, и местом сбора продуктов реакции. В сущности, энзимологи придумали и впервые практически осуществили идею нанореактора , ключевую для современных нанотехнологий.