Пальму первенства в открытии каталитических свойств металлов традиционно отдают немецкому химику Иоганну Вольфгангу Дёберейнеру (1780–1848), который в 1821 году получил уксусную кислоту окислением этилового спирта в присутствии платины. Сбраживание вина в уксус – классический пример биотехнологий , осуществляемых природными катализаторами – ферментами. Дёберейнер впервые получил его чисто химическим путем. Парадоксально, но формально металлы как катализаторы были открыты позже ферментов.
Еще через два года Дёберейнер обнаружил явление воспламенения струи водорода, направленной на так называемую губчатую платину, которая выступала в качестве катализатора окисления водорода кислородом воздуха с образованием воды. Реакция эта протекает с выделением большого количества тепла, за счет которого и происходит воспламенение водорода. Открытие немедленно нашло практическое воплощение в “водородном огниве” – устройстве, применявшемся для получения огня до изобретения спичек.
Впрочем, это было едва ли не единственным практическим приложением металлических катализаторов на протяжении нескольких десятилетий. В науке же шло постепенное накопление данных о свойствах и природе каталитического действия металлических катализаторов. Следующий прорыв в этой области связан с именем Поля Сабатье, который в первые годы XX века стал использовать в качестве катализаторов мелкораздробленные металлы. Возможно, после прочтения предыдущих глав книги эта идея представляется вам тривиальной – Сабатье за счет измельчения металла просто увеличил его поверхность и, следовательно, активность. К слову сказать, и Дёберейнер в своем огниве использовал губчатую платину, удельная поверхность которой в десятки раз больше, чем у платиновой проволоки.
Но работать с мелкими частицами чрезвычайно неудобно, их безвозвратно уносит поток газа. Если же реакцию проводить в жидкости, то потом намучаешься с осаждением тонкой устойчивой взвеси.
В лаборатории это еще проходит, но для промышленности никак не годится. Сабатье нашел изящный и универсальный способ преодоления этих трудностей – наносить металлы на поверхность других твердых веществ, которые стали, естественно, называть носителями или подложками. Палладий на угле – самый известный из предложенных Сабатье катализаторов, используемый, кстати, до сих пор.
Он же предложил и общий способ получения таких катализаторов. Зачем механически измельчать металл, если его можно просто растворить в кислоте, затем осадить соль на поверхность носителя и восстановить назад до металла. На стадии связывания соли металла носитель играет роль сорбента. Если эта роль ему не очень удается, то можно воспользоваться вечным армейским принципом “не умеет – научим, не хочет – заставим” и просто выпарить раствор соли металла над носителем.
Этот подход оказался хорош еще и тем, что позволял получать частицы металла размером в несколько нанометров, которые в принципе невозможно получить с помощью механического измельчения. Маленький размер, огромная поверхность – производительность катализаторов сразу выросла на порядки, что открыло им дорогу в промышленность.
То, что нанесенные частицы металла, получаемые этим способом, имеют размер в единицы и десятки нанометров, ученые установили много десятилетий назад. Они научились также получать частицы нужного размера в зависимости от поставленной задачи. Понятно, что для нанесения максимально возможного количества этих частиц исследователи использовали носители с высокой величиной поверхности, так что создаваемые ими катализаторы характеризовались сразу двумя величинами в диапазоне нано: размерами частиц металла и диаметром пор носителя.
Вопрос о том, как образуются эти частицы на поверхности, также не ставил исследователей в тупик, ведь в их распоряжении были прецеденты по получению золей металлов в растворах. Об этом я расскажу подробно в следующей главе, здесь же отмечу главное: при восстановлении на поверхности образуются единичные атомы металла, которые свободно мигрируют по поверхности вследствие теплового движения и, встретившись, слипаются между собой, потому что вместе им находиться энергетически выгоднее, чем по отдельности. Рост формирующейся частицы будет происходить до тех пор, пока в пределах досягаемости не иссякнут единичные атомы металла. Математическая модель этого процесса была предложена профессором МГУ Николаем Ивановичем Кобозевым еще в 1939 году.
Нанесенные металлические катализаторы успешно работали в промышленности, но души исследователей свербели: пусть наночастицы нанесенного металла невелики по размеру, но работают-то в них все равно только поверхностные атомы, да и то не все, это ж сколько драгметалла пропадает зря?! И исследователи не оставляли попыток получить лежащие на поверхности отдельные атомы, которые, как считалось, будут обладать наивысшей каталитической активностью. Но все попытки разрушало тепловое движение атомов по поверхности, которое многократно ускорялось при повышенных температурах, в условиях использования катализаторов.