Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

Первые числа, которые использовали люди, называются натуральными (1, 2, 3, 4, 5…). Согласно учению пифагорейцев, самой влиятельной теории в древнегреческой математике, имеющей основополагающее значение и для современной науки, с помощью натуральных чисел можно описать окружающий нас мир. Натуральные числа (а также ноль и целые отрицательные числа) и построенные с их помощью дроби математики называют рациональными числами. Этот термин становится более понятен, если мы заметим, что слово «рациональный» имеет тот же корень, что и слово «ration», которое, в свою очередь, связано со словом «ratio» («отношение»), а именно соотношение двух величин. Число называется рациональным, поскольку является результатом отношения, деления, а не потому, что оно «разумное» — в другом смысле слова «рациональный».

Пифагор и его последователи более 20 веков назад знали, что корень из двух (√2) не является рациональным числом. Это число нельзя выразить в виде отношения двух натуральных чисел — как результат деления одного числа на другое. Пифагорейцы думали, что числа являются священными сущностями. Они верили, что все в мире может быть измерено, что все имеет численную природу. Поэтому идея невыразимого числа противоречила самой основе их философии.

Числа, которые не являются рациональными, называются иррациональными. Это довольно обманчивое название просто означает, что такие числа не могут быть выражены в виде отношения двух натуральных чисел. Представим только замешательство пифагорейцев, когда они обнаружили действительно иррациональные величины, которые невозможно точно измерить, например, обычную диагональ в квадрате со стороной, равной единице (это и будет число √2). Неудивительно, что они попытались утаить такое неприятное открытие.

Существует много математических отличий между рациональными и иррациональными числами, но, пожалуй, одно из самых замечательных и интуитивно понятных — так называемая «музыкальность». Это хотя и не строго математическое отличие имеет математическую причину, а именно: различие в десятичной записи рациональных и иррациональных чисел.

Десятичные знаки рациональных чисел образуют повторяющуюся последовательность, называемую «периодической», в то время как десятичные знаки иррациональных чисел не повторяются ни с какой закономерностью, они появляются один за другим в непредсказуемом порядке. Однако если каждой цифре мы поставим в соответствие ноту и «сыграем» десятичные знаки рационального числа, мы услышим повторяющуюся мелодию, похожую на мотив песни. С другой стороны, музыка иррациональных чисел представляет собой неприятную какофонию.

ИРРАЦИОНАЛЬНОСТЬ ЧИСЛА √2

Допустим, что число √2 рационально. Это значит, что √2 можно выразить в виде дроби:

√2 = p/q

где р — целое, a q — натуральное число, причем р и q не имеют общих делителей. Избавляясь от знаменателя и возводя в квадрат, получим:

2q2= р2.

Отсюда следует, что р должно быть четным числом.

Тогда мы можем написать р = 2∙r и

2q2= = 4r2.

Разделив обе части на 2, получим:

q2 = 2r2,

откуда следует, что q также должно быть четным. Так как оба числа р и q четные, они имеют общий делитель, равный 2. Какой бы подход мы ни использовали, в результате всегда получается противоречие. Таким образом, первоначальное предположение, что число √2 рационально, неверно.

Определение золотого сечения

Золотое сечение является иррациональным числом, которое мы будем обозначать греческой буквой фи (Ф). Оно было открыто древними греками, и его документированная история начинается с одной из самых известных и много раз переиздаваемых книг всех времен и народов «Начал» Евклида, написанной около 300 г. до н. э.

Шедевр Евклида является первым научным бестселлером в истории. Ученый преследовал две цели, когда писал эту работу. С одной стороны, он хотел собрать все математические результаты того времени и составить энциклопедию, которая служила бы учебником. С другой стороны, он хотел разработать определенную методологию доказательств и построить новую математическую теорию, основанную на аксиомах (утверждениях, принимаемых без доказательств) и законах дедукции.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное