Как же рассчитываются звездные модели? Прежде всего основой таких расчетов являются физические законы, определяющие равновесную конфигурацию звезды. Об этих законах уже шла речь в § 6 и 7. Это, во-первых, условие гидростатического равновесия, которое должно выполняться для каждого элемента объема внутри звезды (см. формулу (6.1)). Во-вторых,— так называемое «условие лучистого равновесия», описывающее перенос излучения из недр звезды, к ее поверхности (см. уравнение (7.10)). Далее необходимо учитывать, как меняется непрозрачность звездного вещества в зависимости от изменения температуры и плотности, а также зависимость давления от плотности и температуры, т. е. «уравнение состояния». Для вещества «нормальных» звезд последнее описывается уравнением Клапейрона, а для белых карликов — формулой (10.1). Необходимо учитывать и очень сильную зависимость скорости выделения ядерной энергии от температуры (см. стр. 246). Кроме того, считаются заданными такие основные параметры «моделируемых» звезд, как их масса, светимость и радиус.
Ввиду сложности системы уравнений, описывающих состояние звезд, расчет модели не может быть сделан аналитически
, т. е. по готовой, пусть даже очень громоздкой, формуле. Успех достигается только численным методом решения этих уравнений (являющихся, кстати, дифференциальными). Предполагается, что модель звезды сферически-симметричная, т. е. все характеристики какого-нибудь элемента ее объема (температура, плотность и пр.) зависят только от расстояния этого элемента от центра звезды. В чем же идея численного метода расчета? Представим себе, что звезда состоит из очень большого числа концентрических сферических слоев. В пределах каждого слоя (если он только выбран достаточно тонким) значения указанных характеристик можно считать постоянными. Зададим значения давления и температуры в центре звезды. Условия гидростатического равновесия позволят тогда найти давление на поверхности первой (самой внутренней) сферы. Далее, путем расчетов определяем, пользуясь формулой Клапейрона, температуру в центре. Затем, зная зависимость скорости ядерного энерговыделения от температуры и используя уравнение для переноса лучистой энергии (7.10), мы получим температуру на поверхности шаровой сферы, а затем, пользуясь формулой Клапейрона,— плотность. Такая процедура (как видим, довольно сложная!) позволяет по данным температуре, плотности и давлению в центре звезды получить те же основные характеристики на некотором относительно малом расстоянии от центра. После этого тем же методом процедура повторяется и получается значение характеристик звездного вещества, на поверхности второй сферы, радиус которой вдвое больше, чем у первой. Так, шаг за шагом, получается «разрез» всей звезды, т. е. значения основных характеристик ее вещества в зависимости от расстояния от центра. Для того чтобы расчет модели увенчался успехом, толщины воображаемых сфер, на которые разбивается звезда, должны быть достаточно малы. С другой стороны, конечно, непрактично делать их слишком маленькими, что привело бы к неоправданно большому увеличению объемов расчета. Практически количество таких сфер бывает порядка нескольких сотен, иногда даже нескольких тысяч. Масса рассчитанной модели получается как результат суммирования «парциальных» масс, заключенных в пределах элементарных сфер. Учитывая «производство» термоядерной энергии в разных слоях, можно по окончании расчета получить теоретическую светимость
звездной модели.