Читаем Звезды: их рождение, жизнь и смерть полностью

Мы уже довольно подробно рассматривали этот источник для объяснения «спокойного» излучения звезд во время их пребывания на главной последовательности (см. § 8). Там же подчеркивалось, что после «исчерпания» водородного ядерного горючего в центральных областях звезды характер ее эволюции значительно усложняется. Равновесное состояние звезды на конечной стадии ее эволюции зависит от первоначальной массы, которая предполагается неизменной на протяжении всей эволюции. Последнее предположение, однако, как мы уже раньше видели в § 13, заведомо не выполняется. Например, на стадии красного гиганта у реальных звезд наружные слои отделяются, а из внутренних образуется белый карлик.

Тем не менее полезно рассматривать идеализированную модель звезды, которая все время сохраняет свою массу и к тому же не вращается. Можно полагать, что такое упрощенное рассмотрение задачи позволит выявить ряд существенных особенностей заключительной фазы звездной эволюции. Расчеты показывают, что если масса такой «идеализированной» звезды меньше чем 1,2 солнечной, то конечным продуктом эволюции являются белые карлики, о которых речь шла в § 10. Для звезд с массой, большей чем 1,2, но меньшей 2,5 солнечной, конфигурация с вырожденным газом уже не является равновесной. Как это было показано еще в 1938 г. американскими физиками-теоретиками Оппенгеймером и Волковым, такая звезда после исчерпания запасов ядерного горючего должна катастрофически сжаться и превратиться в сверхплотный объект размерами около 10 км — в нейтронную звезду. Мы уже упоминали об этом в § 10. Необходимо, однако, подчеркнуть, что звезды с массой, превышающей некоторый предел, близкий к 2,5 солнечной массы, в конечном итоге должны катастрофически сжаться в точку (так называемые «черные дыры», о которых подробно будет рассказано в § 24).

Таким образом, в зависимости от первоначальной массы идеализированной модели звезды теория предсказывает три типа конечного состояния «мертвых» (т. е. исчерпавших свою энергию) звезд:

1. белые карлики,

2. нейтронные звезды,

3. черные дыры.

Первые известны астрономам вот уже свыше 70 лет. Нейтронные звезды после долгих безуспешных попыток были открыты только в 1967 г. Наконец, есть некоторые основания полагать, что несколько известных объектов отождествляются с «черными дырами» (см. § 24). Таким образом, мы видим, что хотя «идеализированная» модель звезды и является крайне упрощенной, существование всех трех разновидностей «мертвых» звезд она предсказала правильно. Первоначальная теория, однако, не указывала на конкретные пути образования «мертвых» звезд.

По всем данным вспышки сверхновых связаны с конечным этапом звездной эволюции. Это видно хотя бы из весьма своеобразного химического состава волокон Кассиопеи А. Из сказанного следует, что можно ожидать «генетическую» связь между вспышками сверхновых и образованием нейтронных звезд и черных дыр. Последнее обстоятельство «подозревалось» давно, но только около 15 лет назад были получены прямые наблюдательные данные: в остатках сверхновых обнаружены нейтронные звезды.

Естественнее всего считать, что огромное количество энергии, освобождаемое при вспышках сверхновых, имеет ядерное происхождение. Однако далеко не всякое ядерное горючее может быть, хотя бы в принципе, ответственно за взрыв звезды. Прежде всего это относится к водороду — основному ядерному горючему, поддерживающему путем соответствующих термоядерных реакций «спокойное» излучение звезд на главной последовательности. Дело в том, что хотя выделение энергии при полном превращении водорода в гелий и очень велико (6 1018 эрг/г), оно происходит достаточно медленно. Поэтому взрыва (т. е. очень быстрого освобождения большого количества энергии) в этом случае произойти не может.

Медленность термоядерных реакций на ядрах водорода объясняется тем, что цепь таких реакций (см. § 8) в качестве необходимых звеньев содержит процесс -распада. Последние же протекают весьма медленно и их нельзя никаким образом «ускорить»: ведь это же «спонтанные», т. е. самопроизвольные процессы. Например, даже при самой высокой температуре реакция превращения водорода в дейтерий:

происходит из-за -распада очень медленно. Однако при высоких температурах благодаря уже рассматривавшейся в § 8 реакции 34He 12С и последующих реакций ядер углерода с ядрами гелия (альфа-частицами) вида

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука