Читаем Звезды: их рождение, жизнь и смерть полностью

Вернемся теперь к вопросу о связи пульсаров и радио- и рентгеновских туманностей — остатков вспышек сверхновых. Заслуживает, прежде всего, внимания тот факт, что все три туманности — остатки сверхновых; внутри которых находятся пульсары,— являются плерионами. В то же время из наблюдений следует, что плерионы, по-видимому, являются остатками вспышек сверхновых II типа. Это доказано для двух исторических сверхновых — 1054 г. (давшей начало Крабовидной туманности) и 1181 г. («родительницы» плериона 3C 58). Любопытно подчеркнуть, что туманности — остатки вспышек «исторических» (т. е. зарегистрированных в хрониках) сверхновых I типа плерионами не являются. Напрашивается вывод, что нейтронные звезды, наблюдаемые как пульсары,— это остатки взрывов более массивных и молодых сверхновых II типа, между тем как после взрывов менее массивных, сравнительно старых звезд — сверхновых I типа, звездных остатков не сохраняется,— они полностью рассеиваются в межзвездном пространстве.

То обстоятельство, что нейтронные звезды образуются в результате эволюции массивных звезд, представляется вполне естественным. Ибо только у таких звезд может образоваться кислородно-углеродное ядро с массой, превышающей чандрасекаровский предел. Наличие нейтронных звезд (наблюдаемых как рентгеновские пульсары — см. § 21) в массивных двойных системах как будто бы подтверждает такой вывод.

Возможно, что к этой проблеме имеет отношение явление радиоизлучения сверхновых (а не их остатков!), которое в последнее время привлекает к себе внимание радиоастрономов. Во всех трех случаях, когда это явление наблюдалось, излучали радиоволны сверхновые II типа спустя 1—3 месяца после максимума блеска. Не исключено, как предположил автор этой книги, что стимулирует радиоизлучение сверхновых II типа находящийся там молодой, активный пульсар. Возможно, однако, и другое объяснение, связывающее это радиоизлучение со взаимодействием расширяющейся оболочки с окружающим взорвавшуюся звезду «ветром».

<p><strong>Глава 21 Пульсары как источники радиоизлучения</strong></p>

Пожалуй, труднее всего для пульсаров определяются две основные характеристики всякого «нормального» источника радиоизлучения — поток и спектр. Эти трудности связаны прежде всего с самой природой пульсаров. Дело в том, что, как уже неоднократно упоминалось выше, радиоизлучение пульсаров в высшей степени сложным образом меняется со временем. Эти изменения, в частности, бывают очень быстрыми, например, два соседних импульса могут иметь заметно различающиеся «профили» (это то же самое, что на оптических частотах кривая блеска). Другими словами, за время порядка секунды (характерное время для периода пульсаров) могут наблюдаться существенные изменения потока. Специфической особенностью пульсаров как источников радиоизлучения являются их ничтожно малые угловые размеры. Поэтому они, как никакие другие известные в радиоастрономии источники, подвержены сцинтилляциям. И хотя спектр радиоизлучения пульсаров, по-видимому, достаточно стабилен, характер сцинтилляций существенно зависит от частоты излучения. Это приводит к сильнейшим искажениям спектра при прохождении излучения пульсара через межзвездную среду. Например, на некоторой частоте за несколько минут из-за сцинтилляции поток радиоизлучения может упасть до нуля, в то время как для частоты, слегка отличной, такое уменьшение потока произойдет уже в другой момент. Добавив к этому, что обусловленные сцинтилляциями искажения быстро меняются со временем, мы получим представление о том, что «истинный» спектр радиоизлучения пульсара определить не просто. Для исключения влияния сцинтилляции прежде всего нужно усреднять наблюдения по очень большому (исчисляемому сотнями) числу периодов. При этом, однако, возникает дополнительная трудность, что за такое большое количество периодов само «истинное» (т. е. не искаженное сцинтилляциями) излучение пульсаров может заметно измениться. Так получаются «сглаженные» по времени «синтетические» профили и «синтетические» спектры. В свою очередь сравнение различных «синтетических» профилей, полученных для одного и того же пульсара, позволяет выявить ряд вариаций, начиная от минутных и кончая годовыми. Естественно, что данных о более долговременных вариациях основных характеристик излучения пульсаров пока не существует, так как первые пульсары обнаружены всего около 15 лет назад.

Рис. 21.1: «Синтетические» спектры нескольких пульсаров.
Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука