Читаем Звезды: их рождение, жизнь и смерть полностью

Наряду с 2,08707-дневной периодичностью потока рентгеновского излучения от источника Центавр Х-3 была обнаружена и другая, гораздо менее тривиальная периодичность. Оказалось, что излучение этого источника носит характер периодических пульсаций, с периодом 4,84239 секунды! (рис. 23.4). В промежутках между такими очень короткими импульсами поток рентгеновского излучения уменьшается почти в 10 раз. Точные наблюдения показали, что сам период пульсаций плавно меняется с периодом 2,08707 дня по синусоидальному закону (рис. 23.5). Эти маленькие, но регулярные изменения периода пульсаций легко объясняются эффектом Доплера при орбитальном движении источника е постоянным периодом пульсаций. Это доказывается хотя бы тем наблюдаемым фактом, что скорость изменений периода пульсации обращается в нуль тогда, когда затмение достигает середины, т. е. когда направление орбитальной скорости рентгеновского источника перпендикулярно к лучу зрения (рис. 23.6). Из величины вариаций периода пульсаций, обусловленных орбитальным движением рентгеновской звезды, непосредственно, по известной формуле эффекта Доплера, находится значение орбитальной скорости, которая оказывается равной 415 км/с.

Рис. 23.6: Сравнение кривых лучевых скоростей пульсирующего источника Центавр Х-3 и кривой затмения.

Следует заметить, что часто «пульсирующая компонента» рентгеновского источника пропадает на несколько дней. В течение этого времени поток рентгеновского излучения от источника Центавр Х-3 уменьшается на порядок и становится примерно таким же, как при «затмениях», т. е. излучение источника остается на более или менее постоянном («низком») уровне. Затем короткие импульсы возобновляются без всякого сбоя в фазе. Эти сложные явления, по-видимому, связаны с механизмом самого рентгеновского излучения источника Центавр Х-3. Переход между двумя уровнями излучения происходит не резко, а длится около часа. В течение этого короткого «переходного» времени спектр становится значительно «жестче». Это указывает на наличие довольно протяженной атмосферы вокруг оптической компоненты двойной системы, которая, «находя» на рентгеновский источник, производит поглощение прежде, чем последний скроется за непрозрачным диском звезды. Длительность этой «переходной» стадии меняется, что указывает на нестационарность оболочки, окружающей оптическую звезду.

После нескольких неудачных попыток рентгеновский источник Центавр Х-3 был отождествлен со спектрально-двойной звездой 13-й величины. Эта звезда является переменной и обладает рядом особенностей. Основанием для такого отождествления послужило хорошее совпадение координат (в пределах 1 дуги), а главное — периодические изменения лучевых скоростей линий в спектре этой звезды, причем период в точности совпадает с орбитальным периодом Центавра Х-3. Указанные периодические изменения лучевых скоростей спектральных линий, без сомнения, вызваны, орбитальным движением оптической звезды. Анализ рентгеновских и оптических данных позволяет выяснить характеристики двойной системы Центавр Х-3. Это очень тесная пара звезд с почти круговой орбитой, радиус которой 6 1011 см, что только в 8,7 раза превышает радиус Солнца. Оптическая звезда представляет собой объект довольно высокой светимости, масса которого около 15 солнечных масс, а радиус 5 1011 см (в 7,2 раза больше солнечного). Это означает, что расстояние от рентгеновского источника до фотосферы оптической звезды всего лишь в 1,5 раза больше солнечного радиуса. Масса рентгеновской компоненты, линейные размеры которой невелики, порядка массы Солнца. При таком отношении масс обеих компонент двойной системы «большая» оптическая звезда заполняет свою «полость Роша» (см. § 14) и из малой области на ее поверхность должна вытекать струя газа, образующего вокруг компактной рентгеновской компоненты уплощенный диск.

Такова модель рентгеновского источника Центавр Х-3, которая логически вытекает из того факта, что рентгеновская звезда входит в состав тесной двойной системы. В истории астрономии двойные звезды сыграли большую роль. Например, только для двойных систем можно с достоверностью определить массы звезд. Явление новых звезд тесно связано с их двойственностью (см. § 14). С другой стороны, сама эволюция звезд в двойных системах отличается большим своеобразием (см. тот же параграф). Тот факт, что была обнаружена рентгеновская звезда в составе тесной двойной системы, позволяет получить не только ценнейшую информацию об основных характеристиках таких звезд, но и открывает возможность понять их природу. Сразу же напрашивается аналогия между 4,84-секундным периодом пульсаций рентгеновского излучения от источника Центавр Х-3 и радиопульсарами. Поэтому объекты, подобные источнику Центавр Х-3, сразу же получили название «рентгеновские пульсары». Аналогия между рентгеновскими и радиопульсарами имеет глубокий смысл, о чем будет идти речь ниже.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука