Вычислительные машины Паскаля и Лейбница, так же как и некоторые другие, появившиеся в XVIII столетии, не получили широкого распространения. Они были сложны, дороги, да и общественная потребность в подобных машинах была еще не очень острой. Однако по мере развития производства и общества такая потребность стала ощущаться все больше и больше, особенно при составлении различных математических таблиц. Повсеместное распространение в Европе конца XVIII — начала XIX века получили арифметические, тригонометрические и логарифмические таблицы; банки и ссудные конторы применяли таблицы процентов, а страховые компании — таблицы смертности. Но совершенно исключительное значение (в особенности для Англии — «великой морской державы») имели астрономические и навигационные таблицы. Предсказания астрономов относительно положения небесных тел были в то время единственным средством, позволявшим морякам определять местонахождение их кораблей в открытом море. Эти таблицы входили в «Морской календарь», который выходил ежегодно. Каждое издание требовало огромного труда десятков и сотен счетчиков. Незачем говорить, как важно было избежать при составлении этих таблиц ошибок. Но ошибки все равно были. Сотни и даже тысячи неверных данных содержали также самые распространенные таблицы — логарифмические. Издатели этих таблиц были вынуждены содержать специальный штат корректоров, проверявших полученные вычисления. Но и это не спасало от ошибок.
Положение было настолько серьезным, что английское правительство — первое в мире — озаботилось о создании специальной вычислительной машины для составления подобных таблиц. Разработка машины (ее называют разностной) была поручена известному английскому математику и изобретателю Чарльзу Бэббиджу. В 1822 году была изготовлена действующая модель. Поскольку значение изобретения Бэббиджа, а также значение разработанного им способа машинных вычислений очень велики, следует подробнее остановиться на устройстве разностной машины.
Рассмотрим прежде на простом примере метод, предложенный Бэббиджем для составления таблиц. Допустим, требуется вычислить таблицу четвертых степеней членов натурального ряда 1, 2, 3…
Пусть такая таблица уже вычислена для некоторых членов ряда в колонке 1 — и полученные значения занесены в колонку 2. Вычтем из каждого последующего значения предыдущее. Получится последовательное значение первых разностей (колонка 3). Проделав ту же операцию с первыми разностями, получим вторые разности (колонка 4), третьи (колонка 5) и, наконец, четвертые (колонка 6). При этом четвертые разности оказываются постоянными: колонка 6 состоит из одного и того же числа 24. И это не случайность, а следствие важной теоремы: если функция (в данном случае это функция y(x)=x4, где x принадлежит множеству натуральных чисел) есть многочлен n-й степени, то в таблице с постоянным шагом его n-е разности будут постоянны.
Теперь легко догадаться, что получить требуемую таблицу можно исходя из первой строки с помощью сложения. Например, чтобы продолжить начатую таблицу еще на одну строку, нужно выполнить сложения:
156+24=180
590+180=770
1695+770=2465
4096+2465=6561
В разностной машине Бэббиджа применялись те же десятичные счетные колеса, что и у Паскаля. Для изображения числа использовались регистры, состоящие из набора таких колес. Каждой колонке таблицы, кроме 1, содержащей ряд натуральных чисел, соответствовал свой регистр; всего в машине их было семь, поскольку предполагалось вычислять функции с постоянными шестыми разностями. Каждый регистр состоял из 18 цифровых колес по числу разрядов изображаемого числа и нескольких дополнительных, используемых как счетчик числа оборотов для других вспомогательных целей.