Ученые подсчитали, что человек среднего роста и веса в минуту потребляет около 250 миллилитров кислорода. Опять же, согласно расчетам, это количество он сможет получить только в том случае, если кровь, протекающая по сосудам его тела, из каждых 100 миллилитров своего объема будет отдавать в ткани шесть миллилитров растворенного в нем кислорода. Для этих целей в нашем организме имеется специальная транспортная система – караваны уже известных нам эритроцитов, доставляющих кислород в различные органы и ткани.
В свою очередь, каждый эритроцит на 35–38 % состоит из уникальнейшего вещества – гемоглобина, или, как его иногда называют, молекулярного легкого. И хотя это соединение уже многие десятилетия находится под пристальным вниманием биохимиков и физиологов, тем не менее, оно по-прежнему таит в себе немало тайн и загадок.
И все же об этом веществе ученые узнали многое. Например, что гемоглобин состоит из белковой части – глобина, в состав которого входит четыре полипептидные цепочки. В свою очередь, каждая цепочка связана с одним гемом. Гем же, в свою очередь, состоит из циклического соединения – порфирина, в центре которого находится атом железа.
У этого атома шесть валентностей: четыре удерживают его внутри порфиринового кольца и лежат в плоскости кольца, а две, словно антенны приемника, направлены кнаружи, перпендикулярно этой плоскости. Одна из этих «антенн» связана с цепочкой белка глобина, а другая «охотится» за молекулярным кислородом: и если «охота» оказывается удачной, то гемоглобин превращается в оксигемоглобин.
Довольно любопытной особенностью в механизме функционирования «молекулярного легкого» является своеобразная кооперация гемов одной молекулы гемоглобина, заключающаяся в том, что все четыре гемма работают не порознь, а вместе и согласованно: каждую следующую молекулу кислорода гемоглобин захватывает (и отдает) легче, чем предыдущую. То есть каждый гем каким-то непонятным путем «узнает», присоединили соседние гемы кислород или еще нет.
Еще в 1970 году лауреат Нобелевской премии англичанин Макс Перутц выдвинул гипотезу, которая, по его мнению, объясняла механизм работы гемоглобина.
Ее суть Перутц пояснил на следующем примере. Представьте, говорил ученый, что четыре человека, взявшись за руки, образовали круг. Каждый из них должен поймать мяч, который бросает кто-то находящийся вне круга. Человек, который ловит мяч первым, испытывает больше всего трудностей, поскольку ему необходимо освободить обе руки. Второму поймать мяч легче, так как одна рука у него уже свободна. Проще же всего завладеть мячом последнему из этой четверки, потому что он никоим образом не связан с соседями. Ну и, конечно же, людям, стоящим лицом к мячу, поймать его легче, чем тем, кто стоит к нему спиной.
Лауреат Нобелевской премии Макс Перутц
Если же эту игру экстраполировать на работу гемоглобина, то первая молекула кислорода присоединяется к нему труднее всего. Затем, по мере насыщения кислородом, солевые мостики между цепями гемоглобина разрываются, и молекула из дезоксиформы превращается в оксиформу, то есть из структуры, которой вступить в реакцию с кислородом сложнее, в ту, которой это сделать легче. И чем обильнее насыщается кровь кислородом, тем большее количество молекул гемоглобина приобретает оксиструктуру.
Всего же в одном эритроците, диаметр которого всего 7 микрон, находится 280 миллионов молекул гемоглобина, каждая из которых состоит из 10 тысяч атомов. В целом же в организме человека циркулирует около 25 триллионов эритроцитов. Общая же площадь их поверхности составляет 3800 квадратных метров.
Но в этом невероятно огромном количестве эритроцитов содержится всего 2,45 грамма железа, благодаря которым мы дышим! А ведь столько весит небольшой железный гвоздик, который, условно говоря, позволяет нам жить, так как именно железо в легких присоединяет кислород и в тканях отдает его.
Кроме того, благодаря железу кровь человека, как и у всех позвоночных животных, имеет красный цвет. Впрочем, она такого же цвета у некоторых моллюсков, дождевых червей, пиявок…
В том, что гемоглобин находится в эритроцитах, есть своя логика. И зиждется она на том факте, что в жидкой части крови, т. е. в плазме, находятся белки, которые обладают так называемым онкотическим давлением – способностью удерживать воду около себя, препятствуя ее проникновению внутрь капилляров через их стенки. Но так как гемоглобин тоже белок, то, будучи растворенным в плазме, он резко увеличивал бы ее поглощающую способность. В результате кровеносные сосуды переполнились бы водой, которую всасывали бы из тканей загустевшие концентрированные плазменные белки.
Подобное явление иногда встречается в реальной жизни. Происходит это при отравлениях кислотами или при неправильных переливаниях крови. В этих случаях стенки эритроцитов разрушаются, и гемоглобин поступает в плазму. А поскольку вернуть его обратно в эритроциты уже нельзя, то приходится выводить его наружу. А вместо поврежденной собственной крови больного вливать ему донорскую.