Для этого из одного кровеносного сосуда выпускают 3–5 литров «дефектной» крови, и в то же самое время в другой сосуд вливают такое же количество заранее заготовленной здоровой донорской крови.
Иногда, чтобы растворенный гемоглобин не забивал почки, в кровь больного в большом количестве вводят щелочные растворы. Затем вливают препараты, стимулирующие мочеотделение. В этом случае сначала идет темно-красная, потом красная, розовая и, наконец, светло-желтая моча.
Что же касается «деловых качеств» гемоглобина, то каждый его грамм может связать 1,34 миллилитра кислорода. Если же вспомнить, что в 100 миллилитрах крови здорового человека содержится 15 граммов гемоглобина, то расчеты показывают, что это количество крови может обогатиться 20 миллилитрами кислорода. Иначе говоря, содержание кислорода в нормальной крови будет равно 20 объемным процентам.
Какие же условия должны соблюдаться, чтобы гемоглобин максимально загрузился кислородом?
В практическом плане эти условия связаны с процессом перехода кислорода из альвеол в эритроцит. А этот процесс, в свою очередь, обусловлен формой эритроцита, который, как мы уже знаем, представляет собой двояковогнутый диск.
Такая форма наиболее выгодна для быстрой диффузии молекул кислорода вглубь эритроцита, так как при такой конфигурации диффузионная поверхность увеличивается, а диффузное расстояние, которое необходимо преодолеть молекулам кислорода, уменьшается.
Кроме того, благодаря такой форме эритроциты могут проскальзывать через тонкие извитые капилляры.
Однако как бы тесно на первый взгляд ни соприкасался диск эритроцита со стенкой капилляра, между ними всегда находится слой плазмы. И именно только через нее эритроцит получает кислород в альвеолах и отдает его тканям: правда, попав в плазму, кислородные молекулы сами пробиваются сквозь стенку капилляра в сторону тканевых клеток.
Хотелось бы обратить особое внимание на то обстоятельство, что хотя в плазме растворяется очень мало кислорода (всего 0,3 миллилитра на 100 миллилитров крови), но именно этот скудный объем газа определяет степень кислородной загрузки эритроцитов! Как только количество кислорода в плазме уменьшается, этот дефицит сокращается за счет дополнительных поступлений из эритроцитов.
Когда здоровый человек дышит обычным воздухом, в альвеолах содержится столько кислорода, что молекулы его создают в плазме протекающей крови напряжение около 100 мм ртутного столба, что позволяет почти полностью загрузить эритроциты кислородом. То есть в этом случае насыщение гемоглобина приближается к 100 %, поэтому и кровь в артериях становится ярко-алой.
Но бывает, что загрузка гемоглобина снижается и кровь начинает поставлять в ткани недостаточное количество кислорода: тогда артериальная кровь темнеет и возникнет артериальная гипоксия.
Это может иметь место в двух случаях.
Во-первых, гипоксия может появиться тогда, когда скорость движения крови по легочным капиллярам возрастет в 3 раза, и она будет проскакивать через них всего за 1/4 секунды: в этом случае нужное количество кислорода просто не успеет раствориться в плазме.
Такое состояние бывает у больных с большой кровопотерей, у которых в сосудах остается совсем мало крови, и, чтобы обслужить весь орган, ей надо часто-часто «забегать» в легкие за кислородом.
Второй случай недонасыщения крови кислородом возникает тогда, когда утолщается стенка альвеолы (воспаление легких), либо увеличивается расстояние между этой стенкой и капилляром, что происходит, например, при отеке легких. В этом случае молекулы кислорода «пробиваются» через новые препятствия с трудом: напряжение кислорода в плазме падает со всеми вытекающими отсюда последствиями.
Очень интересно реагирует человеческий организм на постоянный недостаток кислорода в крови, которая циркулирует в легких. Так, у горцев, проживающих в районах с разреженным воздухом, эритроцитов больше, чем у жителей равнин.
Следует отметить, что рост числа эритроцитов при артериальной гипоксемии вызван не непосредственным стимулирующим влиянием кислородного голодания на костный мозг, в котором происходит образование этих красных телец, а увеличением в крови специальных веществ – зритропоэтинов. Именно они-то и подстегивают производство эритроцитов костным мозгом.
ЗАГАДОЧНЫЕ ФЕНОМЕНЫ КРОВИ
В последние годы физиологи и медики открыли ряд новых поразительных особенностей крови.
Так, было установлено, что клетки человеческой крови светятся. Причем кровь больного человека светится с иной интенсивностью, чем здорового. У первого – свечение сильное, а у второго – слабенькое. Почему это так, ученые пока могут лишь гадать и выдвигать более-менее правдоподобные гипотезы.
Так, по одной из них, излучение света – не только симптом болезни, но и способность крови передавать информацию обо всем, что происходит с ней и организмом, как это делает лазерный луч. Так вот, здоровая кровь молчит, а больная – сигнализирует о беде.