Читаем 120 практических задач полностью

– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей. Процедура `train_step` выполняет одну итерацию обучения GAN.

6. Обучение GAN:

– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений:

– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать сложную GAN для генерации реалистичных изображений лиц. Модель может быть улучшена за счет добавления дополнительных

<p><strong>9. Развертывание модели в продакшн</strong></p>

– Задача: Создание REST API для модели.

Развертывание модели машинного обучения в продакшн включает создание REST API, который позволяет клиентам взаимодействовать с моделью через HTTP запросы. В этом примере мы будем использовать Flask, популярный веб-фреймворк на Python, для создания REST API, который может обрабатывать запросы на предсказание с использованием обученной модели.

Шаги:

1. Импорт библиотек и загрузка модели.

2. Создание Flask приложения.

3. Определение маршрутов для API.

4. Запуск сервера.

Пример кода:

1. Импорт библиотек и загрузка модели

```python

import numpy as np

import tensorflow as tf

from flask import Flask, request, jsonify

# Загрузка обученной модели (предполагается, что модель сохранена в формате .h5)

model = tf.keras.models.load_model('path_to_your_model.h5')

```

2. Создание Flask приложения

```python

app = Flask(__name__)

```

3. Определение маршрутов для API

```python

@app.route('/predict', methods=['POST'])

def predict:

# Получение данных из POST запроса

data = request.get_json

# Преобразование данных в формат, подходящий для модели

# Предположим, что данные представляют собой изображение в виде списка пикселей

image_data = np.array(data['image']).reshape((1, 28, 28, 1)) # Пример для модели, работающей с изображениями 28x28 пикселей

# Выполнение предсказания

prediction = model.predict(image_data)

# Возвращение результата в формате JSON

return jsonify({'prediction': prediction.tolist})

# Маршрут для проверки работы сервера

@app.route('/')

def home:

return "API для предсказаний работает!"

```

4. Запуск сервера

```python

if __name__ == '__main__':

app.run(host='0.0.0.0', port=5000)

```

Полный пример кода:

```python

import numpy as np

import tensorflow as tf

from flask import Flask, request, jsonify

# Загрузка обученной модели

model = tf.keras.models.load_model('path_to_your_model.h5')

# Создание Flask приложения

app = Flask(__name__)

# Определение маршрута для предсказания

@app.route('/predict', methods=['POST'])

def predict:

# Получение данных из POST запроса

data = request.get_json

# Преобразование данных в формат, подходящий для модели

image_data = np.array(data['image']).reshape((1, 28, 28, 1)) # Пример для модели, работающей с изображениями 28x28 пикселей

# Выполнение предсказания

prediction = model.predict(image_data)

# Возвращение результата в формате JSON

return jsonify({'prediction': prediction.tolist})

# Маршрут для проверки работы сервера

@app.route('/')

def home:

return "API для предсказаний работает!"

# Запуск сервера

if __name__ == '__main__':

app.run(host='0.0.0.0', port=5000)

```

Пояснение:

1. Импорт библиотек и загрузка модели: Импортируются необходимые библиотеки и загружается обученная модель TensorFlow/Keras.

2. Создание Flask приложения**: Создается Flask приложение.

3. Определение маршрутов для API:

– Маршрут `/predict` принимает POST запросы с JSON данными, извлекает изображение, делает предсказание с помощью модели и возвращает результат в формате JSON.

– Маршрут `/` просто возвращает сообщение для проверки работы сервера.

4. Запуск сервера: Запускается Flask сервер на порту 5000.

Развертывание на удаленном сервере

Для развертывания на удаленном сервере, таком как AWS, GCP или любой другой хостинг, выполните следующие шаги:

1. Подготовка окружения:

– Установите Python и необходимые библиотеки (Flask, TensorFlow и др.).

– Убедитесь, что у вас есть доступ к модели.

2. Запуск приложения:

– Перенесите скрипт Flask на сервер.

– Запустите приложение, используя команду `python <имя_вашего_скрипта>.py`.

3. Настройка веб-сервера (опционально):

– Для обработки более высокого трафика и обеспечения надежности можно использовать веб-сервер, такой как Nginx или Apache, в связке с WSGI сервером, например, Gunicorn.

– Пример команды для запуска с Gunicorn:

```bash

gunicorn –bind 0.0.0.0:5000 wsgi:app

```

Этот пример демонстрирует, как развернуть модель машинного обучения в продакшн, предоставив к ней доступ через REST API. В реальной среде можно добавить дополнительную обработку данных, аутентификацию, логирование и другие механизмы для повышения надежности и безопасности вашего приложения.

<p><strong>10. Применение ансамблевых методов для улучшения точности модели</strong></p>
Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука