Читаем 120 практических задач полностью

– Создание и обучение нескольких моделей нейронных сетей.

– Объединение их предсказаний путем усреднения.

Ансамблевые методы позволяют повысить точность предсказаний за счет комбинирования нескольких моделей, что снижает вероятность ошибки и повышает устойчивость модели к различным типам данных.

<p><strong>11. Классификация новостных статей с использованием RNN</strong></p>

– Задача: Категоризация текстов новостей.

Для классификации новостных статей с использованием рекуррентных нейронных сетей (RNN) используются модели, способные учитывать последовательный характер текстовой информации. В данном случае мы рассмотрим задачу категоризации текстов новостей, где каждая статья должна быть отнесена к определенной категории на основе её содержания.

Построение модели RNN для классификации новостных статей

1. Подготовка данных

Прежде чем начать построение модели, необходимо подготовить данные:

– Загрузить и предобработать тексты новостных статей.

– Преобразовать тексты в числовой формат, который может быть обработан моделью RNN.

– Разделить данные на обучающую и тестовую выборки.

2. Построение модели RNN

Для классификации текстов можно использовать следующую архитектуру RNN:

– Embedding Layer: Преобразует слова в векторные представления.

– RNN Layer (LSTM или GRU): Обрабатывает последовательность слов, учитывая их контекст.

– Полносвязные слои: Используются для объединения выходов RNN и предсказания категории новости.

Пример кода на Keras для построения модели:

```python

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Embedding, Dense, SpatialDropout1D

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

# Подготовка данных

# Пример загрузки данных (здесь используется вымышленный пример)

texts = ["новость 1 текст", "новость 2 текст", …] # список текстов новостей

labels = [0, 1, …] # метки классов для каждой новости

# Токенизация текстов

max_features = 10000 # максимальное количество слов в словаре

tokenizer = Tokenizer(num_words=max_features)

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

# Паддинг последовательностей, чтобы все они имели одинаковую длину

maxlen = 200 # максимальная длина текста (количество слов в новости)

X = pad_sequences(sequences, maxlen=maxlen)

y = np.array(labels)

# Разделение на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Построение модели RNN

model = Sequential

model.add(Embedding(max_features, 128, input_length=maxlen))

model.add(SpatialDropout1D(0.2)) # для уменьшения переобучения

model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation='sigmoid'))

# Компиляция модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Обучение модели

epochs = 10

batch_size = 32

model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))

# Оценка точности модели на тестовой выборке

score = model.evaluate(X_test, y_test, batch_size=batch_size)

print(f'Точность модели: {score[1]:.4f}')

```

Пояснение по коду:

1. Токенизация и преобразование текста: Входные тексты преобразуются в последовательности чисел с помощью `Tokenizer` из Keras.

2. Embedding Layer: Слой `Embedding` преобразует числовые индексы слов в векторные представления.

3. RNN Layer (LSTM): В данном примере используется слой LSTM для работы с последовательностью слов. LSTM помогает учитывать долгосрочные зависимости в последовательности.

4. Полносвязные слои: После слоя LSTM следует один или несколько полносвязных слоев для получения финального предсказания категории новости.

5. Компиляция и обучение модели: Модель компилируется с оптимизатором `adam` и функцией потерь `binary_crossentropy` (в случае бинарной классификации) или `categorical_crossentropy` (в случае многоклассовой классификации).

6. Оценка модели: После обучения модели оценивается её точность на тестовой выборке.

Преимущества использования RNN для классификации новостей

– Учет последовательности: RNN эффективно обрабатывает тексты, учитывая контекст и последовательность слов.

– Способность к изучению долгосрочных зависимостей: LSTM (или другие варианты RNN) способны запоминать долгосрочные зависимости в тексте, что полезно для анализа новостных статей.

– Относительная простота в реализации: С использованием библиотек глубокого обучения, таких как TensorFlow или PyTorch, построение и обучение модели RNN становится относительно простым процессом.

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука