Читаем 120 практических задач полностью

– Энкодер: Преобразует входные данные в скрытое представление меньшей размерности.

– Декодер: Восстанавливает данные из скрытого представления обратно в оригинальные данные.

Пример архитектуры нейронной сети для автоэнкодера:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

# Пример архитектуры автоэнкодера для обнаружения аномалий в финансовых транзакциях

# Подготовка данных (вымышленный пример)

# X_train – обучающие данные, X_test – тестовые данные

# Данные предварительно должны быть нормализованы

input_dim = X_train.shape[1] # размер входных данных

# Энкодер

input_layer = Input(shape=(input_dim,))

encoded = Dense(32, activation='relu')(input_layer)

encoded = Dense(16, activation='relu')(encoded)

# Декодер

decoded = Dense(32, activation='relu')(encoded)

decoded = Dense(input_dim, activation='sigmoid')(decoded)

# Модель автоэнкодера

autoencoder = Model(input_layer, decoded)

# Компиляция модели

autoencoder.compile(optimizer='adam', loss='mse')

# Обучение модели на обычных (нормальных) образцах

autoencoder.fit(X_train, X_train,

epochs=50,

batch_size=128,

shuffle=True,

validation_data=(X_test, X_test))

# Использование автоэнкодера для предсказания на тестовых данных

predicted = autoencoder.predict(X_test)

# Рассчитываем ошибку реконструкции для каждого образца

mse = np.mean(np.power(X_test – predicted, 2), axis=1)

# Определение порога для обнаружения аномалий

threshold = np.percentile(mse, 95) # например, выбираем 95-й процентиль

# Обнаружение аномалий

anomalies = X_test[mse > threshold]

# Вывод аномалий или дальнейшее их анализ

print(f"Найдено {len(anomalies)} аномалий в данных.")

```

Пояснение архитектуры и процесса:

1. Архитектура автоэнкодера: Модель состоит из двух частей: энкодера и декодера. Энкодер уменьшает размерность данных, представляя их в скрытом пространстве меньшей размерности. Декодер восстанавливает данные обратно в оригинальную размерность.

2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.

3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.

4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.

Преимущества использования автоэнкодеров для обнаружения аномалий

– Не требуется разметка данных: Автоэнкодеры могут обучаться без размеченных данных, что упрощает процесс обнаружения аномалий.

– Универсальность: Могут использоваться для различных типов данных, включая структурированные данные, изображения и текст.

– Высокая чувствительность к аномалиям: Автоэнкодеры могут выявлять сложные и неочевидные аномалии, которые могут быть пропущены другими методами.

Этот подход к обнаружению аномалий является эффективным инструментом для финансовых институтов и других отраслей, где важно быстро выявлять подозрительные или необычные события в данных.

<p><strong>15. Прогнозирование погоды с использованием LSTM сети</strong></p>

– Задача: Анализ временных рядов метеорологических данных.

Прогнозирование погоды с использованием LSTM (Long Short-Term Memory) сети – это задача анализа временных рядов, которая требует учета зависимостей в данных со временем, таких как температура, влажность, давление и другие метеорологические параметры. LSTM, как тип рекуррентной нейронной сети, хорошо подходит для работы с последовательными данных, сохраняя информацию на длительные временные интервалы.

Построение LSTM сети для прогнозирования погоды

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать временные ряды метеорологических данных.

– Разделить данные на обучающую и тестовую выборки.

– Масштабировать данные для улучшения производительности обучения модели.

2. Построение модели LSTM

Рассмотрим архитектуру LSTM сети для прогнозирования погоды:

– LSTM слои: Используются для запоминания и учета долгосрочных зависимостей в данных о погоде.

Пример архитектуры нейронной сети для прогнозирования погоды:

```python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout

# Пример построения LSTM модели для прогнозирования погоды

# Подготовка данных (вымышленный пример)

# Загрузка и предобработка данных

# Пример данных (вымышленный)

# Здесь данные должны быть загружены из вашего источника данных

# Давайте представим, что у нас есть временной ряд температур

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука