Читаем 120 практических задач полностью

input_shape = (256, 256, 3) # размер входного изображения (примерное значение)

# Создание модели CNN

model = Sequential

# Сверточные слои

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

# Преобразование из двумерного вектора в одномерный

model.add(Flatten)

# Полносвязные слои

model.add(Dense(256, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax')) # num_classes – количество классов для классификации

# Компиляция модели

model.compile(loss='categorical_crossentropy', optimizer=Adam, metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

```

Пояснение архитектуры и процесса:

1. Сверточные слои (Convolutional Layers): Каждый сверточный слой извлекает признаки из изображений. Уменьшение размера с помощью слоев пулинга (Pooling) помогает снизить количество параметров и улучшить вычислительную эффективность.

2. Полносвязные слои (Dense Layers): После извлечения признаков на последнем слое свертки, данные преобразуются в одномерный вектор и передаются через полносвязные слои для окончательной классификации.

3. Компиляция и обучение модели: Модель компилируется с функцией потерь `categorical_crossentropy` (подходящей для многоклассовой классификации), оптимизатором Adam и метрикой точности. После компиляции модель обучается на обучающих данных и валидируется на валидационной выборке.

Преимущества использования CNN для классификации медицинских изображений

– Извлечение признаков: Сверточные слои CNN автоматически извлекают важные признаки из изображений, что особенно важно для медицинских изображений.

– Автоматическая локализация: CNN способны локализовать аномалии или признаки заболеваний на изображениях.

– Способность к обучению: Модели CNN могут обучаться на больших наборах данных и достигать высокой точности, что необходимо для надежной диагностики.

Этот подход активно применяется в медицинских исследованиях и практике для автоматизации процесса диагностики и повышения точности обнаружения заболеваний на основе медицинских изображений.

<p><strong>18. Создание нейронной сети для синтеза текста</strong></p>

– Задача: Генерация текста на основе заданного начала.

Создание нейронной сети для синтеза текста – это задача, в которой модель обучается генерировать текст на основе предыдущего контекста или начальной последовательности слов. Такие модели могут быть построены с использованием рекуррентных нейронных сетей (RNN), включая LSTM (Long Short-Term Memory) или GRU (Gated Recurrent Unit), которые способны улавливать долгосрочные зависимости в тексте.

Построение нейронной сети для синтеза текста

1. Подготовка данных

Процесс подготовки данных для обучения модели синтеза текста включает:

– Загрузку текстового корпуса, на котором будет обучаться модель.

– Токенизацию текста (разделение текста на отдельные слова или символы).

– Формирование последовательностей данных для обучения, где модель прогнозирует следующее слово или символ на основе предыдущих.

2. Построение модели RNN для синтеза текста

Рассмотрим пример простой архитектуры модели с использованием LSTM:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Embedding

# Пример создания нейронной сети для синтеза текста на основе LSTM

# Параметры модели

embedding_dim = 100 # размерность векторного представления слов

hidden_units = 256 # количество нейронов в LSTM слое

vocab_size = 10000 # размер словаря (количество уникальных слов)

max_sequence_length = 20 # максимальная длина последовательности

# Создание модели

model = Sequential

# Слой встраивания (Embedding layer)

model.add(Embedding(vocab_size, embedding_dim, input_length=max_sequence_length))

# LSTM слой

model.add(LSTM(hidden_units, return_sequences=True))

model.add(LSTM(hidden_units))

# Полносвязный слой для предсказания следующего слова

model.add(Dense(vocab_size, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

```

Пояснение архитектуры и процесса:

1. Слой встраивания (Embedding layer): Преобразует входные слова в векторное представление заданной размерности (`embedding_dim`), что позволяет модели эффективнее работать с текстовыми данными.

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука